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Abstract—Surface electromyography (sEMG) commonly used
in upper-limb prostheses requires expensive medical equipment
to get accurate results, and even then only a few actions can
be classified. We propose an sEMG activated embedded system
based on Digital Signal Processing and Machine Learning, to
interpret the user intention with the purpose of controlling a
low-cost 3D printed hand prosthesis with multiple Degrees of
Freedom (DOF). The system has three different operating modes
with a user-friendly Human Machine Interface (HMI), in order
to increase the amount of customized hand postures that can be
performed by the user, providing functionalities that fit on their
daily chores and allowing to use inexpensive surface mounted
passive electrodes in order to keep a low cost approach. Inasmuch
as sEMG activation allows the user to consciously perform the
desired action, on the other hand a touchscreen enables the
possibility to select different predefined actions and operating
modes, as well as provide necessary visual feedback. Moreover, in
another operating mode, a speech recognition module recognizes
user speech in 3 different languages, allowing the user more
sEMG activated postures. Finally, an operating mode based on
Artificial Neural Networks (ANN) classifies 5 hand gestures that
can be easily accomplished by below elbow amputees. The system
was tested and obtained high accuracy and great responsiveness
on the different modes of operation.
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I. INTRODUCTION

Galileo Bionic Hand is a low-cost 3D-printed prosthetic
hand, which is planned to be released as a Do It Yourself
kit (DIY), so that people with disabilities could contact local
makers to help them to build the system. The prosthesis was
designed to be easily built and repaired by anyone with no
experience on prosthesis manufacturing anywhere in the world,
ensuring its proper operation and removing the need to require
expert support. Since, electromyography is a technique used
to detect the activity of a group of muscles by measuring bio-
potentials acquired by surface mounted electrodes, a controller
based on this technique was implemented, allowing the user
to consciously perform desired postures on the prosthesis.
Although the complexity of the controller increases the cost
of development and fabrication, we are focused to keep the
price range below $500 and aiming at a DIY approach where

the electronic components could be distributed as a kit which
includes the system built on a printed circuit board (PCB),
complementing the open source files of the 3D design and the
materials to build the prosthesis.

Knowing the limitations of conventional steel hook prosthe-
ses and considering the elevated cost of a typical myoelectric
prosthesis, like the beBionic3 [4], some low-cost open source
projects have been released based on 3D printing technology.
Global networks of volunteers, like e-Nable are designing and
distributing free prosthetic hands for those in need, however,
myoelectric prostheses are not available yet [9]. Moreover,
companies like Handiii, who released the HACKberry, a sim-
plified and open source version of its myoelectric prostheses
do not offer a wide range of user actions [13].

A hybrid sEMG activated controller with multiple oper-
ating modes is proposed and described in Section II. This
controller takes advantage of digital signal processing and
machine learning techniques, in order to integrate different
systems on a single embedded controller operated through a
user-friendly HMI that perfectly adapts on the user lifestyle
like a wearable device. This allows the performing of more
and complex customized hand prosthetic actions, such as
individual finger movements, different kinds of grasping and
time based sequential actions.

Fig. 1. Galileo Hand, 3D printed bionic version.



II. SYSTEM ARCHITECTURE

The system is based on low cost and high performance
microcontroller unit (MCU) based on the ARM Cortex-M4
architecture, with signal processing capabilities, ideal for the
type of tasks required to develop a high-efficiency, responsive-
ness and user-friendly controller. The block diagram proposed
in Fig. 2 shows a flexible controller based on low-cost compo-
nents, intended to be released as a DIY kit with the capability
of providing customized hand postures that best suit the user’s
lifestyle.

Fig. 2. The system block diagram showing the different operating modes.

A. HMI and Operating Modes

The controller has a user-friendly HMI with three operating
modes to improve functionality and increase the number of
customized hand postures. A QVGA TFT-LCD touchscreen is
used, allowing to select between the different functionalities of
the controller by pressing buttons directly on the touchscreen,
beside the possibility to provide visual feedback to the user as
shown on Fig. 3.

1) Hybrid sEMG-Activated Touch Controller: This ap-
proach allows to consciously activate predefined postures
through a hybrid sEMG-touch interface. A Finite State Ma-
chine (FSM) is implemented, allowing the user to consciously
activate and deactivate desired actions, by detecting sEMG
signals on the muscles involved in the intended hand gestures.
The user has to select the desired posture by pressing a button
directly on the touchscreen and then perform it through sEMG
activation by detecting contraction on flexor muscles of the
forearm. Contractions on forearm extensor muscles releases
the posture and allows the return to the default or rest posture.

2) Hybrid sEMG-Activated Voice Controller: This ap-
proach allows to consciously activate predefined postures
through a hybrid sEMG-voice interface based on the Easy
VR speech recognition module that communicates with the
MCU through a UART interface. The user has the possibility
to select between three predefined languages by pressing
buttons directly on the display. Twenty six predefined voice
commands and up to twenty eight customized voice commands
are available, considerably increasing the number of postures
that the user can perform [8]. To select the desired action the

user has to press a push button and say a command before a 3
seconds timeout. If the voice command is recognized, a visual
feedback will be displayed. Finally the user has to activate and
deactivate the actions by sEMG signal detection, as described
in the sEMG-Activated Touch Controller section.

3) sEMG Pattern Recognition: This operating mode takes
advantage of machine learning algorithms, allowing the system
to learn and classify five hand gestures produced by below
elbow amputees. Useful information about the classification is
displayed such as the prediction and the real valued confidence
score for each class. Furthermore, by pressing a button on the
touchscreen, the user has the choice between Off-line Learning
(i.e. training) that collects sEMG features, in order to train the
algorithm to properly classify the predefined gestures from
a set of muscle contractions, and On-line Classification (i.e.
usage) to let the system predict which hand action is intended
from muscular activity.

Fig. 3. Human machine interface for sEMG-Activated voice controller and
machine learning controller.

B. sEMG Signal Acquisition
Two bipolar channels with standard surface mounted

Ag/AgCl electrodes with wet conductive gels are placed on
palmaris longus and extensor digitorum muscles, focusing
only on below elbow disarticulation, as shown on Fig. 4.
These electrodes have been well-characterized and most of its
properties are well understood, except for some properties as
drifting and low-frequency noise. Nevertheless, with proper
preparation of the skin, the sEMG signal is excellent [12],
[22]. These signals are differential with zero mean and an
amplitude varying from ±25 uV to ±10 mV . The bandwidth
is 30 to 2000 Hz, depending on the dimension and the depth
of the muscles contracting underneath the electrodes. These
parameters are affected by power line noise and ground po-
tential variability. The electrodes are placed on the skin surface
and are connected to the input of a precision instrumentation
differential amplifier based on Texas Instruments (TI) INA122,
then its output is passed through an active low pass filter
(LPF) based on TI OPA335 in order to sense the action
bio-potentials of the muscular fibers with an output signal
span in the range of 0 to 3.3 V and a bandwidth between
0 to 500 Hz. The circuit is built-in on a custom PCB with 2
electromyography channels and a bias voltage reference output
(1.25 V ); furthermore, it is compatible with TI Launchpad
Development Ecosystem, which is ideal for the single ended
input of a microcontroller in addition to contributing to low
cost development kits [18], [20].



C. sEMG Signal Processing

With the exception of a few cases, the major power of
surface EMG signals is accounted for by harmonics up to
400 − 500 Hz and most of the remaining signal power is
contributed by electrode and equipment noise [10].
The EMG signals are collected using the on-chip 12-bit
ADC of the TI TM4C12x microcontrollers with a 1000 kHz
sample rate considering Nyquist sampling theory, and then
are processed in order to get more accurate results on event
detection and pattern classification.

Fig. 4. Surface Mounted Electrodes Location.

1) sEMG Signal Detection: A precise detection of discrete
events in sEMG is an important issue in the analysis of the
motor system of the hand, a single-threshold method is used
for detecting the On and Off timing of the muscles, comparing
the Root Mean Square (RMS) value of the rectified signals
with thresholds whose values depend on the mean power of the
background noise of each channel [5], [17]. After removing the
offset measured from the bias voltage reference, 100 samples
are rectified to finally calculate the RMS value to detect the
intended hand action used to trigger the transitions of the FSM
that controls each operating mode.

2) Filtering: In order to eliminate the interference caused
by AC frequency (50 − 60 Hz) of the mains power line. A
window-based Finite Impulse Response (FIR) High-pass filter
(HPF) which offers good performance at a very limited compu-
tational and memory cost was designed in Matlab software and
implemented with the CMSIS-DSP software library for ARM
Cortex-M processor based devices [6]. Once, an sEMG signal
is detected, 500 samples per channel are collected and filtered,
in order to condition the signal with a bandwidth between
(100−500 Hz). Frequency and phase response are shown on
Fig. 5.

D. Feature Extraction

The success of any pattern classification system depends
almost entirely on the choice of features used to represent
continuous time waveforms [2]. Taking into account that the
time-domain features are preferred because of their low com-
putational complexity [23] and knowing that sEMG signals are
nonlinear and stochastic, once an sEMG signal is detected and
filtered, six features per channel are extracted of time series
analysis as proposed in [11], [12].

Fig. 5. Frequency and phase response of FIR high-pass filter.

1) Variance (σ2): It is interpreted as a measure of the
power density of the sEMG signal, and is given by

σ2 =
1

N − 1

N∑
n=1

x2n (1)

where xn is the nth data sample of sEMG signal which has
N data samples.

2) Waveform Length (WL): It is a cumulative variation in
amplitude from sample to sample over the entire time period
that can indicate the degree of variation about the sEMG
signal. It is given by

WL =

N∑
n=1

|xn − xn−1| (2)

3) Integral of EMG (IEMG): This feature is an estimate of
the summation of absolute values of sEMG signal. It is given
by

IEMG =

N∑
n=1

|xn| (3)

4) Zero Crossings (ZC): This feature counts the number of
times that the signal crosses zero. This parameter is susceptible
to noise, so a threshold method is implemented in order to
reduce noise-induced zero crossing. It is given by

ZC =

N∑
n=1

[sgn(−xn×xn+1) > 0 ∧ |xn−xn+1| ≥ 0.06] (4)

5) Slope Sign Changes (SSC): This feature counts the
number of times that the slope of the signal changes of sign.
The use of a threshold ensures that only significant changes
are counted in order to reduce noise induced in slope sign
changes. It is given by

SSC =

N∑
n=1

[(xn − xn−1)× ((xn − xn+1) ≥ 0.06] (5)



6) Willison Amplitude (WAMP ): This parameter records
the number of times that the signal change in amplitude
exceeded a predefined threshold value set above noise level.
It is an indicator of firing motor unit muscle potential and
therefore it can indicate the muscle contraction level. It is
given by

WAMP =

N∑
n=1

f(|xn − xn+1|), (6)

where,

f(x) =

{
1, if x > 0.12
0, otherwise

E. Classification

ANN is a mathematical model that is inspired by the way the
biological nervous system process information, This classifier
has been devised as a Multilayer Feedforward Neural Network,
with an input layer with 12 nodes, one hidden layer with
30 nodes and an output layer with 5 nodes. The inputs are
the features extracted for each sEMG channel and whose
outputs are the real valued confidence scores, where the index
of largest value represents a class label between zero and
four (5 classes). This architecture was chosen considering that
an ANN with one hidden layer is a universal approximator,
considering that its number of neurons in the hidden layer
should be as small as possible to simplify the computation and
to reduce the risk of overfitting [16], [21]. The implementation
of the classification system is divided into two stages:

1) Off-line Learning: This stage allows the user to collect
features between a set of five predefined hand gestures, which
must be selected by pressing a button on the touchscreen,
allowing the system to present sets of features with its
corresponding class output. Fifty sets of features triggered
by the muscle contraction of predefined hand gestures are
collected by sending the data to a personal computer (PC)
through a UART interface, which itself must be stored as
a comma-separated values (CSV) file, in order to train the
ANN in Matlab [2], [14]. The scaled conjugate gradient
backpropagation method for fast supervised learning is used
to train the ANN because it’s more effective than the standard
backpropagation method [15]. The dataset was divided in 70%
for training, 15% for validation and 15% for testing [16].
Finally, readable, compact, and fast C code for use on an
ARM Cortex-M processor is generated in order to implement
the ANN on the embedded system [19].

2) On-line Classification: This stage allows the user to
trigger predefined motions from a set of muscle contractions
to let the system predict which hand gesture is intended
from muscular activity. During system operation, the features
extracted from sEMG signals are presented as inputs to the
trained ANN, where the outputs are scanned in order to
choose the largest value of the real valued confidence scores.
If this value is above a specified threshold, the prosthetic hand
function corresponding to this output class is selected and
performed [2].

F. Simulation and testing

To facilitate collaboration between people and institutions
working on this project, and later to train potential users
without having to share an available mounted prosthetic, a
simulation of the prosthetic (Fig. 6) was developed using the
V-REP robotic simulation framework. The simulation is kine-
matically equivalent to the real prosthetic hand. Its modularity
allows to plug the simulation instead of the real prosthesis
to the human machine interface transparently, allowing the
use of the same control hardware as the real prosthetic hand.
Moreover, the 3D printed prosthesis is also used in order to test
the entire system. Its fifteen DOF allow the user to experiment
with a real prosthetic hand that provides a dexterous control,
important for the performance of the most common tasks in
modern life, specially with the thumb’s rotation mechanism
needed for properly performance of different kinds of grips
such as fine pinch gripping and tripod grasping [1].

Fig. 6. Hand Prosthesis Simulation on V-REP from Coppelia Robotics.

III. RESULTS

The interaction between subject and the integration of
systems was tested successfully. Elected postures were tested
twenty times for each operating mode. The correct rate for the
sEMG activated controllers are shown on Table I. Remarkably,
on the sEMG activated voice controller, the test results shown
in Table II are satisfactory for three different languages (En-
glish, Spanish and Japanese). Furthermore, the correct rate for
pattern recognition mode is shown in Table III.

Table I. Rates for each hybrid sEMG activated controllers.

Mode Intended gesture Hand posture Rate

Touch
controller

Flexion/extension Power Grip 100%
Flexion/extension Pointing 100%
Flexion/extension Rock gesture 100%
Flexion/extension Pinch grip 100%

Voice
controller

Flexion/extension No. 0 gesture 100%
Flexion/extension No. 1 gesture 100%
Flexion/extension No. 2 gesture 100%
Flexion/extension No. 3 gesture 100%
Flexion/extension No. 4 gesture 100%



Table II. Correct rates of speech recognition.

Module Command Spanish English Japanese

Speech
recogn.

One 100% 100% 100%
Two 100% 100% 100%

Three 100% 100% 100%
Four 100% 100% 95%
Five 100% 100% 100%
Six 100% 100% 100%

Seven 100% 100% 100%
Eight 100% 100% 90%
Nine 100% 90% 90%
Total 100% 98.89% 86.11%

Table III. Correct rates of sEMG patter recognition.

Mode Intended gesture Hand posture Rate

Pattern
recogn.

Close Power Grip 85%
Open Opening 80%

Flexion Pointing 75%
Extension Pinch grip 90%

Peace Lateral grip 100%
Total 86%

IV. CONCLUSIONS AND FUTURE WORK

It is shown that this integration of systems has advantages
over traditional systems because of its user-friendly HMI that
brings the possibility of increasing the amount of customized
hand postures that can be performed, and allowing the uti-
lization of low cost components in order to keep the price
range below $500. Since sEMG activation allows the user to
consciously perform the desired actions, the sEMG pattern
recognition mode is the most natural way to let the system
triggers predefine hand postures. However, its accuracy rate
is below the other modes, and only a few hand gestures can
classified. That reason supports that the hybrid sEMG voice
controller is a great solution to let the system trigger a wide
variety of predefined hand gestures with perfect accuracy, as
long as the subject uses their native language. Moreover, if
the environment is auditorily noisy, the hybrid sEMG touch
controller also allows a trigger mechanism operating under
any circumstance with perfect accuracy. The work described
has not yet been tested on below elbow amputees. We are
currently working on improving towards a better sEMG signal
acquisition system with more channels, and improving the
performance of the system, implementing the entire system on
an ARM Cortex-M7 platform, in order to increase the accuracy
rate of the pattern recognition operating mode and allowing
for new useful HMI interfaces. Finally, we have to start the
testing stages with disabled patients to get useful feedback in
order to improve the entire system [3].
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