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Abstract—Human-machine interfaces based on the classifi-
cation of hand gestures often use electromyography to collect
and interpret user intent; however, this methodology records
the electrical activity produced by skeletal muscles suffering
from different drawbacks that affect their performance. In this
way, other approaches, such as near-infrared spectroscopy, were
studied, presenting advantages over traditional techniques since
it is not susceptible to electrical noise and electrode degradation.
This work presents a hand gesture classification system for a
human-machine interface based on near-infrared spectroscopy
and a convolutional neural network that classifies five gestures.
The data acquisition system shows a transparent and fluent
transfer of data that represents the hemodynamics of three
specific sets of muscles used with a classification model for
five different hand gestures, showing comparable and promising
results against traditional electromyography-based classification
methods.

Index Terms—Near-infrared spectroscopy, pattern recognition,
hand gesture classification, human-machine interface, convolu-
tional neural networks.

I. INTRODUCTION

The increasing demand for human-machine interfaces
(HMI) within fields like robotics and assistive technologies,
such as prostheses, has catalyzed extensive research efforts to
achieve efficient and robust classification of hand gestures [1].
This effort has enabled the study of diverse methods to recover
and interpret user intent [2]–[5]. In this way, hand gesture
classification based on surface electromyography (EMG) relies
on the electrical activity generated by the muscles during the
activation and engagement of hand movements. This technique
is widely used because it is minimally invasive and can
produce a fair amount of information from the signal about
the amount and positioning of the muscle fibers engaged [6],
[7]. Thus, several HMI work exclusively by analyzing specific
EMG activation profiles or by pattern recognition methodolo-
gies based on machine learning techniques [2], [8]. However,
the use of EMG for this purpose has well-known drawbacks,
such as electrode positioning, fatigue, inherent crosstalk in
the surface signal, displacement of the muscles, and the limb
position effect [2], [9]–[11].

On the other hand, some efforts have been made to study
different types of technologies to monitor the activity of
the muscles [12]. These emerging technologies could solve
some of the problems present in the techniques based on
EMG, especially in interpreting the user’s intention from the

classification of manual gestures. Human-Machine interfaces
based on near-infrared spectroscopy (NIRS) have shown to
be a good alternative since it had been demonstrated the
relationship between microvascular oxygenation levels and
muscle activation [13]–[17]. This way, when specific muscular
contractions occur, the perfusion varies according to the hand
gesture performed, as well as the geometry and characteristics
of the optodes used in the acquisition systems [18]. Thus,
the work proposed in [13] performs a selection process that
resulted in 11 key features, enhancing gesture recognition
accuracy. In addition, comparative testing using different
classifiers: multilayer perceptron neural network (MLPNN),
Bayesian classifier (BC), linear and quadratic discriminant
analysis (LDA and QDA)—was conducted on these features
across various gestures and participants. The study found
that the MLPNN model presents the most promising result,
confirming the chosen features’ potential to extract valuable
information from hemodynamic signals.

This work presents the proof of concept for an HMI based
on a data acquisition system for muscle activity based on the
hemodynamic response of three different sets of muscles using
NIRS optodes strategically located in a 3D printed bracelet, as
shown in Fig. 1. In addition, a Convolutional Neural Network
(CNN) model is presented for hand gesture classification for

Fig. 1. The NIRS acquisition system placed on the forearm of one of the
volunteers. The bracelet facilitates the location of the three optodes in three
specific groups of muscles.



five gestures captured using the NIRS data acquisition system,
presenting comparable results with a model based on the same
architecture but trained with a similar EMG dataset.

The rest of this work is structured as follows: Section II
elaborates on the system architecture of the acquisition system
and the dataset preparation. Section III, delves into the experi-
ment design, the data preprocessing, and the hand gesture clas-
sification model proposed. Additionally, experimental results
about the system’s functionality are presented in Section IV.
Finally, the conclusions are presented in Section V.

II. METHODS

A. Hardware Architecture

The data acquisition was implemented using a high-
performance unit (MCU) based on the ARM Cortex-M4F
architecture (STM32F303K8), which employs its I2C module
for communicating with three optodes. This way, three Maxim
Integrated, MAX30102, configured for SPO2 operation, with
a sampling rate of about 400 Hz, and an ADC resolution of 18
bit, were used to capture the hemodynamics associated with
muscle contractions gathered from three different groups of
muscles. Since each optode has the same slave address (fixed
and unmodifiable from the factory), a simple time multiplexing
method is implemented by providing the bus clock signal
of the bus to each optode using an AND gate, as shown
in Fig. 2. Thus, data available in the internal FIFO of each
MAX30102 is retrieved and filtered within a period of 50 ms
to be transmitted and storage into a personal computer (PC)
using UART communication protocol with a baud rate of about
230400 bauds.

B. Dataset

NIRS signals were obtained from 10 subjects (8 male, 6
right handed and 2 left handed and 2 right handed females)
using 3 optodes attached to the forearm at the flexor digitorum
superficialis, extensor digitorum, and flexor carpi ulnaris. Each
subject performed 5 hand gestures: Hand Close (HC), Hand
Open (HO), Wrist Flexion (WF), Wrist Extension (WE), and
Index Finger Extension (IFE), as shown in Fig. 3. Each of
these movements was repeated 25 times, having a resting
period of 10 seconds between repetitions to avoid muscle
fatigue. Finally, 3750 NIRS signals were acquired to train and
test the model.

Fig. 2. NIRS system acquisition diagram block for the three optodes used to
prepare the dataset.

EMG signals used in the second model were obtained from
the Gesture Recognition and Biometrics ElectroMyogram
database (GRABMyo) [19]. This dataset was acquired from
43 subjects using surface EMG. To perform the comparison
between methods, only the signals from the 5 hand gestures
were extracted using the channels where the electrodes were
positioned as in NIRS. The final dataset is composed of 4515
signals.

C. Classification model

The classification of the hand gestures using the EMG and
NIRS signals was performed using a Convolutional Neural
Network (CNN). The model architecture is based on a prede-
fined architecture [20] which consists of 5 blocks as presented
in Fig. 4. The first blocks are composed of Convolutional
layers and a Rectified Linear Unit (ReLU) as the activation
function, and the final layer is a Fully Connected layer with
a Softmax activation function. The models were trained using
Categorical Cross-entropy as the loss function. Additionally,
two dropout layers were added, one after the second block and
one after the forth block. The dropout rate was set to 0.8 in
both layers.

III. EXPERIMENT DESIGN

A. Signal Pre-processing

Before logging the data in a PC using a comma-separated
value (CSV) format, a simple DC blocker filter in cascade with
a third-order low pass Butterworth Filter with a cut-off corner
frequency of about 10 Hz is implemented to complement the
on-chip sensor’s discrete-time proprietary filtering (electrical
noise and ambient light cancelation). This way, the following
IIR filters (coefficients truncated with 4 decimal digits) was
implemented in the MCU to remove drift and the noise
introduced by the pulsations of the IR light from each optode.

H1(z) =
1− z−1

1− 0.9500z−1
(1)

H2(z) =
0.0004 + 0.0012z−1 + 0.0012z−2 + 0.0004z−3

1− 2.6862z−1 + 2.4197z−2 − 0.7302z−3
(2)

Thus, all the filtered data from the three optodes are stored in
a small ping-pong buffer of 8 blocks and then sent via UART
to the PC data logger.

Fig. 3. Gestures performed by the subjects. From left to right: Hand Open
(HO), Wrist Flexion (WF), Wrist Extension (WE), Hand Close (HC), and
Index Finger Extension (IFE), respectively.



Fig. 4. CNN model architecture used for hand gesture classification for both EMG and NIRS-based methods.

B. Classification Network

A CNN architecture model (as shown in Fig. 4) was
implemented to classify the five hand gestures captured by the
NIRS data acquisition system. Additionally, a second model
using the same architecture was trained with EMG data to
compare and validate the feasibility of the system. An 8-fold
cross-validation approach was used for both models, as well
as the ADAM optimizer with a learning rate of 0.001 and a
batch size of 512. The EMG-based model was trained for 60
epochs, while the NIRS-based model was trained for 600 due
to the reduced amount of data.

IV. RESULTS

The data acquisition system was successfully tested and
validated, as shown in the first row of Fig. 5. The results
show real-time operation as the time delay introduced due to
buffer management, signal pre-processing (Eqs. 1 and 2), and
data transmission results in approximately 50 ms. The first row
of Fig. 5 presents hemodynamic signals captured from three
different hand gestures (WE, IFE, and HO) acquired from
the three optodes placed on the sets of muscles mentioned
in Sec. II-B at a sample rate of about 400 Hz, and compared
with EMG signals acquired with the OTBioelettronica’s EMG-
USB2+ with a sample rate of about 2048 Hz (GRABMyo

Fig. 5. Comparison between EMG and NIRS raw data using three different
gestures, (a) IFE, (b) HO and (c) WF, respectively.

dataset) [19]. In addition, the orange, green, and blue signals
on Fig. 5 represent muscle activity on the extensor digitorum,
flexor digitorum superficias, and flexor carpi ulnaris set of
muscles, respectively.

The EMG and NIRS classification models achieved an
accuracy of 80 % and 82 %, respectively. As shown in Fig. 6,
NIRS signals allowed an overall improved detection of hand
gestures compared to EMG. Specifically, hand gestures such
as WE, IFE, and HO can be better detected by the NIRS
model, suggesting that NIRS signals allow improved gesture
detection.

Fig. 6. Confusion Matrices of both models for the testing set. (a) EMG-based
model, (b) NIRS-based model.



V. CONCLUSIONS

In this work, we presented a data acquisition system based
on three NIRS optodes and a hand gesture classification model
based on CNN. The results suggest that gesture classification
with an accuracy of 82 % can be achieved based on NIRS
signals and a CNN, as shown in Figs. 5 and 6. Moreover,
the comparison between the EMG and NIRS classification
models showed that NIRS signals provide information that
allows more accurate detection of gestures where there is
similar muscle activation such as WE, IFE, and HO. The latter
demonstrates an advantage over EMG signals as the model
fails to distinguish between them.

Furthermore, NIRS-based methodologies offer distinct ad-
vantages over their EMG counterpart, including hand gesture
classification. One well-known advantage is their capability to
capture multi-joint movements simultaneously, avoiding the
crosstalk effect between an adjacent set of muscles. This
benefit enables more comprehensive hand gesture recognition
through enhanced spatial coverage, such as those involved
in the hand gesture processes (involving the movement of
multiple finger joints). On the other hand, muscle fatigue esti-
mation also benefits from this methodology, as it provides non-
invasive monitoring of hemodynamic changes in muscle tissue,
offering more profound insight into oxygenation and metabolic
activity, which are crucial indicators of this process [17].

In addition, NIRS methodologies are also immune to elec-
trical noise, which makes it ideal for use in rehabilitation pro-
cesses based on functional electrical stimulation (FES) [16].

Finally, in this work, we performed experiments as proof of
concept to demonstrate the potential of NIRS-based systems
for hand gesture detection. Moreover, we compared it against
other traditional methods such as EMG. In the future work,
we want to extend the dataset by including more subjects and
optodes, and further investigate other CNN architectures to im-
prove hand gesture detection that can help in the development
of human-machine interfaces.
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