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“Unveiling the Nexus of Intelligence and Ingenuity: Pioneering the Future through Robotics.”



Resumo
A robótica assistiva desempenha um papel fundamental na melhoria da qualidade de
vida e independência de indivíduos com deficiências ou limitações. Encontrar um compro-
misso adequado entre funcionalidade e custo é crucial na criação de dispositivos acessíveis
e econômicos para aqueles que precisam deles. Essa seleção requer um foco no desen-
volvimento de tecnologias inovadoras que possam fornecer o nível de suporte necessário,
mantendo os custos sob controle. Por exemplo, o abandono do uso das mãos prostéti-
cas multifuncionais deve-se à funcionalidade limitada que algumas podem oferecer. Essa
questão está diretamente relacionada à controlabilidade da torção exercida pelos dedos
e à responsividade que a prótese pode proporcionar na interação com diversos objetos
durante as atividades da vida diária. A maioria das abordagens típicas para esse prob-
lema envolve o uso de sensores e mecanismos complexos que aumentam recursos críticos,
como o preço, tamanho e peso do dispositivo prostético, afetando a reprodutibilidade e a
capacidade de manutenção. Em um outro lado, o problema de localização é um desafio
crítico na robótica móvel, pois determina a capacidade do robô de navegar e interagir
com seu ambiente com precisão. A localização permite que os robôs executem tarefas
com eficiência e segurança, tornando-se um fator crucial no desenvolvimento de sistemas
móveis autônomos, como cadeiras de rodas inteligentes. Este trabalho propõe técnicas
de filtragem robustas que abordam as desvantagens de mãos prostéticas acionadas por
tendão sem sensor e para o problema de localização de robôs baseado em pontos de
referência. Essas estratégias são baseadas em métodos de filtragem ótimos e robustos
através de procedimentos de otimização baseados em desigualdades matriciais lineares,
garantindo maior robustez ao processo de estimação. Essas estratégias foram validadas
usando um dispositivo prostético de membro superior de código aberto e um robô móvel de
acionamento diferencial, mostrando resultados satisfatórios. Para a primeira abordagem,
erros de estimativa entre 0, 0490 ± 0, 0031 e 0, 0764 ± 0, 0052 rad foram obtidos para o
deslocamento angular do redutor dos motores DC de cada dedo. Além disso, a estratégia
de controle foi testada por meio da apreensão de objetos comuns utilizados no dia-a-dia.
Por fim, a segunda abordagem foi testada e comparada com o filtro de Kalman estendido
para localização mostrando melhores resultados em ambientes pequenos.

Palavras-chaves: Prótese de membro superior, robô de acionamento diferencial, sistema
sem sensor, localização baseada em pontos de referência, desigualdades matriciais lineares,
controle robusto, observador robusto..



Abstract
Assistive robotics plays a crucial role in enhancing the quality of life and independence of
individuals with disabilities or limitations. Finding a suitable trade-off between functionality
and cost is crucial in creating devices that are accessible and affordable to those who
need them. This selection requires a focus on developing innovative technologies that can
provide the necessary level of support while keeping costs in check. For example, the
abandonment of multifunctional prosthetic hands has been due to the limited functionality
that some can offer. This issue is directly related to the controllability of the wrench exerted
by the fingers and the responsiveness that the prosthesis may provide while interacting
with different objects during activities of daily living. Most typical approaches to this
problem involve using complex array sensors and complex mechanisms that increase critical
features, such as the prosthetic device’s price, size, and weight, affecting reproducibility
and maintainability. On the other hand, the localization problem is a critical challenge
in mobile robotics, as it determines the robot’s ability to navigate and interact with its
environment accurately. Localization enables robots to perform tasks efficiently and safely,
making it a crucial factor in developing autonomous mobile systems such as intelligent
wheelchairs. This work proposes robust filtering techniques that addresses drawbacks for
sensorless under-tendon-driven prosthetic hands and for the landmark-based localization
problem. These strategies are based on optimal and robust filtering methods through
optimization procedures based on linear matrix inequalities, guaranteeing better robustness
to the estimation process. These strategies were validated using an open-source upper-limb
prosthetic device and differential drive mobile robot showing satisfactory results. For the
first approach, estimation errors between 0.0490± 0.0031 and 0.0764± 0.0052 rad were
obtained for the angular displacement of the gearhead of the DC motors of each finger.
Besides, the control strategy were tested by grasping common objects of daily living.
Finally, the second approach was tested and compared with the extended Kalman filter
for localization showing better results in small environments.

Keywords: Upper-limb prosthesis, differential drive robot, sensorless system, landmark-
based localization, linear matrix inequalities, robust control, robust observer.
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1 Introduction

Robotics has become essential for society due to its immense potential to
automate various industrial and service sector processes. Also, it offers high accuracy,
consistency, and precision for the abovementioned processes, which are difficult to achieve
through traditional human labor. The use of robots for some processes also increases
productivity and efficiency while reducing the overall costs of production, and also plays
a critical role in fields such as healthcare, where robots can perform surgery and assist
in patient care, and space exploration, where robots can operate in environments too
harsh for human exploration. In addition, with advances in Artificial Intelligence (AI) and
Machine Learning (ML), robots are becoming more intelligent and autonomous, allowing
them to make decisions and perform complex tasks with greater accuracy and efficiency.
Moreover, robotics is a crucial technology that is revolutionizing various industries, such
as healthcare, improving the quality of life for people worldwide. This way, intelligent
prostheses, and assistive and rehabilitation robotics play a crucial role in society by
providing individuals with disabilities, injuries, and physical impairments with greater
independence, mobility, and functionality. These advanced technologies enhance the quality
of life by enabling impaired ones to perform daily activities, such as walking and grasping
objects. In addition to promoting physical rehabilitation, intelligent prostheses can improve
mental and emotional well-being by restoring self-confidence, autonomy, and a sense of
purpose. These devices have the potential to revolutionize healthcare, improve patient
outcomes, and reduce the burden on healthcare providers by enabling patients to manage
their conditions independently. As the population ages, the demand for these robotics
devices will continue to grow, making it increasingly necessary to invest in developing and
integrating these technologies into society.

The last World Report on Disabilities shows that at least 30 million people with
amputations reside in developing countries, and most of them cannot acquire prosthetic
care or afford leading commercial assistive technology with pricing around $1000, such as
upper-limb prosthetic devices (PILLING; BARRETT; FLOYD, 2004; ORGANIZATION et
al., ; CUMMINGS, 1996; KATE; SMIT; BREEDVELD, 2017). Meanwhile, several research
laboratories focus on improving dexterity and biomimetics of prosthetic hands, and
implementing expensive and intrusive ways to gather the user intent (BRIDGES; PARA;
MASHNER, 2011; LEVY; BEATY, 2011; HOTSON et al., 2016; CIPRIANI; CONTROZZI;
CARROZZA, 2010; CIPRIANI; CONTROZZI; CARROZZA, 2011). Sometimes, neglecting
other vital aspects of the prosthetic device, like aesthetics, controllability, and the user
interface, the lack of which can influence patients to stop using them (CORDELLA et al.,
2016).
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Due to the limitations of conventional body-powered prostheses, like steel
hooks, and the elevated cost, weight, and difficulties in repairing commercial myoelectric
prosthetic devices (MEDYNSKI; RATTRAY, 2011; TROCCAZ; CONNOLLY, 2008;
KONTOUDIS et al., 2015), many open-source projects based on 3D printing technologies
have been released (KONTOUDIS et al., 2015; SLADE et al., 2015; AKHTAR et al.,
2016; FAJARDO; LEMUS; ROHMER, 2015), whose target is a lightweight and affordable
upper-limb prosthetic device. These limitations encourage its widespread distribution
through global networks by reducing manufacturing costs. That is why the implementation
of such technology in assistive devices has been increasing, improving availability, pricing
and can also offer an extended set of grasps and functionality (KONTOUDIS et al., 2015;
SLADE et al., 2015; AKHTAR et al., 2016; FAJARDO et al., 2017).

Overall, the choice of upper limb prostheses depends on the individual needs
and preferences of the user, as well as their level of amputation and residual limb function.
Thus, a prosthetist can work with the impaired to determine the most appropriate type of
prosthesis and ensure a proper fit and functionality. This way, the several advantages offered
by multifunctional bionic upper limb prostheses compared to passive and body-powered
ones improve the quality of life of impaired ones while interacting with different objects
during activities of daily living (ADLs). However, the rejection rate for adults is around
23%, likely due to the weight, cost, repairability, and maintenance offered by most available
alternatives (BIDDISS; CHAU, 2007). On the other hand, both low- and high-level control
strategy directly affects the use of the prosthetic device and its performance, mainly
due to the poor functionality to interact with objects and interpret the user’s intent.
This way, certain aspects such as overall strength and precision can be improved using
efficient low-level controller/observer approaches implemented in compact, lightweight,
and affordable systems.

Most approaches employ transducers to close the feedback control loops and
improve functionality during ADLs. Rotational and linear potentiometers, quadrature
encoders, and force or tactile/pressure sensors have been used to increase the function-
ality of the prosthetic hands by controlling the speed and the strength exerted by each
finger (CRANNY et al., 2005; CIPRIANI; CONTROZZI; CARROZZA, 2011; AKHTAR
et al., 2016; JIANG et al., 2014). Nevertheless, these approaches entail an increase in
price, size, and weight of the prosthetic device, leading the impaired ones to settle with
lightweight aesthetic prostheses and, in some cases, not to use any at all (SCIENCES;
MEDICINE et al., 2017; SUL, 2011).

Alternatively, sensorless control systems are employed to compensate for some
of the disadvantages of sensor-based systems. These approaches tend to either implement
open-loop or observer-based techniques. The first one requires the user to regulate the speed
and force exerted by the prosthesis according to the behavior perceived by the user showing
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an affordable and straightforward option for achieving the desired purpose (AKHTAR et
al., 2016). However, it presents difficulties for the user to adjust its parameters without
haptics and only through visual stimuli. Typical approaches to close the position or force
control loops in prosthetic hands involve using potentiometers or quadrature encoders
and pressure sensors, respectively (CRANNY et al., 2005; CIPRIANI; CONTROZZI;
CARROZZA, 2011; AKHTAR et al., 2016; JIANG et al., 2014). Some of them employ
complex control strategies that combine multiple feedback loops and anti-windup schemes,
improving its overall performance; however, it increases the price and the device’s size,
leading patients to not buy or to abandon their assistive device (SEOK, 2006; ENGEBERG;
MEEK; MINOR, 2008; SCIENCES; MEDICINE et al., 2017).

The use of sensory feedback provides the patients a more realistic substitute
for their biological counterparts, conveying information as thermal, pressure, strain, or
vibrational stimuli (CHORTOS; LIU; BAO, 2016; JIMENEZ; FISHEL, 2014). This tactile
feedback has been shown to be important since the coordination, manipulation, and grip
selection whilst interacting with everyday items has been demonstrated to worsen when
having a lower sensitivity (ROTHWELL et al., 1982; JOHANSSON; WESTLING, 1984;
MONZÉE; LAMARRE; SMITH, 2003). However, haptics alone does not improve the user’s
interaction with common objects. This leads to employing different kinds of transducers to
close the feedback control loops of the assistive devices to increase their usability during
ADLs. In this way, these approaches increase the price and, in some cases, the prosthesis’s’
size, leading the patients to settle with lightweight aesthetic prostheses or not to use any
at all (SCIENCES; MEDICINE et al., 2017; SUL, 2011).

Other approaches rely on using full-order state observers by measuring the
current demanded by the actuators to estimate the entire state of the system. In contrast,
this approach can even allow the system to eliminate the use of sensors on a prosthetic
device, reduce its size and cost, and facilitate its repairability and maintenance (VAZQUEZ-
SANCHEZ; SOTTILE; GOMEZ-GIL, 2017). In general, for brushed DC motors, the
angular velocity of the motor shaft can be estimated based on the ripple component of
the signal (SINCERO; CROS; VIAROUGE, 2008; FIGARELLA; JANSEN, 2007). On the
other hand, the full state of the system can also be estimated based on its dynamic linear
model (YACHIANGKAM et al., 2004; BOWES; SEVINC; HOLLIDAY, 2004). Thus, it is
more convenient to employ a stochastic dynamical system to improve the estimation of
their states. These methodologies, such as the Kalman (KF), extended Kalman (EKF),
and particle (PF) filters, provide robustness to the exogenous disturbances that may arise
from the sensor and the process itself (PRAESOMBOON et al., 2009; KHALID; NAWAZ,
2014; AYDOGMUS; TALU, 2011). Their main drawback is that the resulting errors and
noises must be modeled as Gaussian, causing practical application issues. As opposed
to the stochastic counterpart, H∞-based, energy-bounded estimators may obtain similar
results with a convergent solution without an idealized model of the noise (FAJARDO et
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al., 2020; FAJARDO et al., 2021).

Furthermore, some approaches that involve the non-linear model of brushed
DC motors employ artificial neural networks to approximate it, specifically in prosthetic
devices (CASTANEDA et al., 2011; LIU; LUO; RASHID, 2003; FARKAS; HALÁSZ;
KÁDÁR, 2004; WEERASOORIYA; EL-SHARKAWI, 1991). However, this leads to high
computational needs, similar to those using sensors with complex algorithms, which
leads to using relatively large, heavy, and expensive microcontroller units (MCUs), Field
Programmable Gate Arrays (FPGAs), or single-board computers (SBCs) (GAETANI et
al., 2018; CHEN et al., 2011).

On the other hand, mobile assistive robotics, such as autonomous wheelchairs,
play an essential role in improving the quality of life and independence of people with
disabilities. These innovative devices offer mobility previously unavailable to people with
physical limitations, allowing them to navigate and interact with their environment in
a way that was once thought impossible. Autonomous technology in wheelchairs gives
users increased control over their movements, enabling them to move more freely, safely,
and efficiently. Moreover, using these devices may reduce the burden on caregivers and
healthcare professionals, allowing them to focus on other areas of care, leading to greater
efficiency in care provision, improved patient outcomes, and reduced healthcare system
costs. Additionally, autonomous wheelchairs may reduce the risk of injury to users and
caregivers and reduce the physical strain of manual handling, reducing healthcare costs
and improving health outcomes.

The importance of these devices lies in their ability to empower individuals
with physical disabilities and improve their quality of life. With advances in technology and
continued research and development, these devices have the potential to revolutionize the
way people with disabilities live and interact with their environments, providing them with
greater independence and freedom of movement. Therefore, to achieve a sufficient level
of autonomy, following the see-think-act developed by (SIEGWART; NOURBAKHSH;
SCARAMUZZA, 2011) is necessary. This scheme describes the three critical steps an
autonomous mobile robot must perform to navigate and interact with its environment
safely and effectively.

The first step in the see-think-act scheme is "see". This step involves the robot
perceiving and understanding its environment through various sensors such as cameras,
LiDARs, radars, and other sensors. These sensors provide the robot with information
about its surroundings, such as obstacles, other objects, and terrain features. The second
step is "think". In this step, the robot processes the information gathered from its sensors
and generates a map of its environment, localizing it within it. This map is used to plan
a safe and efficient path for the robot to navigate through the environment. The robot
also uses its "thinking" capability to make decisions based on the data gathered from its
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sensors, such as avoiding obstacles or adjusting its speed based on the terrain. The third
and final step is "act". In this step, the robot executes its planned actions based on its
environment and its decisions. For example, if the robot detects an obstacle in its path,
it will adjust its path accordingly to avoid the obstacle. Thus, the see-think-act scheme
is a powerful tool for autonomous mobile robots, allowing them to navigate and interact
with their environment safely and effectively. By perceiving their environment, processing
the data, and acting on the information, robots can perform tasks that would otherwise
be impossible for humans. With ongoing advancements in robotics technology, we can
expect to see even more sophisticated and capable autonomous mobile robots, leveraging
the see-think-act scheme and other principles of robotics to accomplish a wide range of
tasks in various settings (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011).

Therefore, the localization problem plays a fundamental task in autonomous
navigation systems, from simple tasks such as vacuum cleaners and floor mops to self-driving
cars and autonomous wheelchairs. This task has been studied over decades, facilitating
various approaches to solve this problem. These approaches differ mainly due to the
techniques involved in dealing with the problem, specifically the methods to represent
the belief about the current pose of the robot and the different sensors used to acquire
information about its surroundings. To achieve full autonomy, only onboard sensors must
be used to perform the robot’s localization (YANG et al., 2009). Thus, one of the most
common methods to predict a mobile robot’s current pose is the dead reckoning technique
using encoders (BORENSTEIN; FENG, 1996; KIRIY; BUEHLER, 2002). Nevertheless,
the prediction error increases as the robot travels, degrading the platform’s pose estimation,
especially for long trajectories and even worse on slippery surfaces (WANG, 1988).

Dead reckoning is a standard method for mobile robot localization that relies
on the robot’s internal sensors, such as encoders, to estimate its position and orientation
based on its previous known location and the robot’s motion information. However,
this method needs to improve on cumulative errors that may accumulate over time and
cause inaccurate estimates of the robot’s position and orientation. In addition, external
factors such as slippery surfaces or uneven terrain can further increase the error in dead
reckoning (BORENSTEIN; FENG, 1996; KIRIY; BUEHLER, 2002). Other techniques,
such as landmark-based localization and visual odometry, have been developed to overcome
these limitations. Landmark-based localization involves detecting and recognizing specific
features or landmarks in the robot’s environment and using them to estimate the robot’s
position and orientation, as well as visual odometry involves using visual sensors, such
as cameras, to estimate the robot’s motion and position by analyzing the changes in the
visual information captured by the sensors (KIRIY; BUEHLER, 2002; BETKE; GURVITS,
1997). The choice of the feature extraction technique depends on the specific application
requirements and constraints, such as the available sensors, the computational resources,
and the accuracy and robustness requirements. However, their main disadvantages rely
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on their dependence on the characteristics of the environment leading to erroneous
interpretation of the provided measurements (YANG et al., 2009).

The most common approach to deal with the problem of robot localization is the
probabilistic one based on Bayesian estimation. Classical algorithms like the KF and EKF
make stochastic assumptions about the process and sensor noises, treating them as additive
Gaussian noise (JETTO; LONGHI; VENTURINI, 1999; JETTO; LONGHI; VITALI, 1999;
FABRIZI et al., 1998). However, it is well known that in real applications, the probability
distributions are multimodal, and the system’s nonlinearities also degrade the performance
of these methods. Furthermore, other methods like the Monte Carlo approach and the
Markov-chain-Monte-Carlo-based methods deal with the problem without assuming noise
characteristics (GORDON; SALMOND; SMITH, 1993; PITT; SHEPHARD, 1999; FOX;
BURGARD; THRUN, 1999; THRUN et al., 2001).

Nowadays, other mainstream techniques are based on the fast laser scan
matching approach, which is based on the iterative closest points (ICP) and the normal
distribution transform (NCP) algorithms (KOHLBRECHER et al., 2011; PENG; WANG;
CHEN, 2017; LU; MILIOS, 1997; BIBER; STRASSER, 2003). However, some drawbacks
are present due to issues with the beam sensor model. Modern optimization-based tech-
niques include incremental constrained smoothing for state estimation, mainly to solve
the simultaneous localization and mapping (SLAM) problem (SODHI et al., 2020). Its
limitation is the need for a fixed linearization point for older states, making it unsuitable
for highly nonlinear problems. Also, run-time performance can be further improved by
exploiting sparsity in constrained jacobians.

This work proposes advanced robust estimation techniques and output-feedback
control strategies based on linear matrix inequalities (LMIs) applied to sensorless transradial
upper-limb prostheses and mobile robotics. The first application case considers a hybrid
control strategy that regulates the force applied to the fingertips during the closing process
using an on-off and an H∞ full-state feedback controllers. This way, an H∞ observer-based
filter and a full-order filter H∞ can also be implemented to estimate the states of the
motor in the under-tendon-driven (UTD) system that drives each finger of the Galileo
Hand, an anthropomorphic upper-limb prostheses (FAJARDO et al., 2017; FAJARDO et
al., 2020).

Therefore, convex optimization techniques based on interior point methods
are employed to solve the problems of designing LMI-based robust control strategies, one
of the most potent tools for formulating control systems since it offers more flexibility
in designing dynamic linear systems than traditional techniques that minimize scalar
functions for optimization (OLIVEIRA; GEROMEL; BERNUSSOU, 2002; GEROMEL et
al., 2000; SKELTON, 2021). These strategies may be computationally intensive; however,
once the optimization problem is solved using a personal computer (PC) or a laptop, these
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can be implemented in the embedded controller of an affordable upper limb prosthetic.
Additionally, an approximate system model is used to reduce the computational load on
the MCU embedded in the main controller of the prosthetic device.

The second application case proposes two alternative approaches to the proba-
bilistic method for landmark-based mobile robot localization based on more conservative
and robust techniques. These approaches also rely on robust extended H∞ estimation
methods, as outlined "in prior work of" (YANG et al., 2009; HUR; AHN, 2012). The critical
difference between these two approaches is that they leverage the power of LMI-based
robust filtering methodologies. The proposed robust estimators throughout this work can
handle nonlinear systems with unknown noise inputs using general noise vectors that
only require to be energy-bounded. These noise vectors are challenging to solve analyti-
cally (BOYD et al., 1993). Additionally, these methods ensure that the energy gain from
noise inputs to the estimation error ratio is limited by an upper-bound limit, guaranteeing
solution convergence.

The first estimation approach involves designing an H∞ observer-based filter
under a two-step prediction correction structure to localize the robot in a predefined
environment. In contrast, the second approach uses a full-order filter H∞, which ensures
better robust performance requirements than the previous approach. Both methods require
solving a convex optimization problem at each time step to determine the filter parameters
that estimate the differential wheeled robot’s pose. This approach offers a better solution to
complex estimation problems than the analytical way finding feasible suboptimal solutions
by solving the Riccati equation, as done in works (YANG et al., 2009; HUR; AHN, 2012),
allowing for modeling the effects of process and measurement noise in a more general and
robust way (SHAKED; THEODOR, 1992; GRIGORIADIS; WATSON, 1997).

The notation used throughout this work is the following: capital and lower-
case bold letters stand for matrices and vectors, respectively; the rest denote scalars.
Furthermore, for vectors and matrices, (T ) indicates transpose; for symmetric matrices,
P > 0 indicates that P is a positive definite matrix; similarly, with P ≥ 0 denoting it as a
positive semi-definite matrix. For a transfer function, H(z) analytic for z ≥ 0, ‖H(z)‖2

and ‖H(z)‖∞ denote the standard H2 and H∞ norms, accordingly. Besides, to ease the
notation of partitioned symmetric matrices, the symbol ? indicates, generically, each of its
symmetric blocks.

The document is structured as follows: Chapter 2 introduces the fundamental
concepts used in this dissertation, details of the hardware used to conduct the tests, and
explains the dynamics of an UTD machine. Chapter 3 discusses the challenges of designing
observer-based LMI-based filtering methods for a UTD-based upper-limb prosthesis and
solving the landmark-based localization problem for mobile robotics without making
assumptions about sensor noise and disturbances. Chapter 4 delves into the different
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approaches exposed to address guaranteed-costH∞ full-state estimation applied to assistive
robotics. Chapter 5 presents the overall control strategy implemented into the Galileo
Hand. Finally, the experimental results and conclusions are presented in Chapters 6 and 7,
respectively.

1.1 Publications
During the course of this research, the following publications related to the

topic were published and have been organized chronologically:

• FAJARDO, J., FERMAN, V., CARDONA, D., MALDONADO, G., LEMUS, A.,
ROHMER, E. (2020). Galileo Hand: An anthropomorphic and affordable upper-limb
prosthesis. IEEE Access, 8, 81365-81377.

• FAJARDO, J., CARDONA, D., MALDONADO, G., NETO, A. R., ROHMER, E.
(2020, July). A robust H∞ full-state observer for under-tendon-driven prosthetic
hands. In 2020 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM) (pp. 1555-1560). IEEE.

• FAJARDO, J., FERMAN, V., GUERRA, J., NETO, A. R., ROHMER, E. (2021,
July). LMI Methods for Extended H∞ Filters for Landmark-based Mobile Robot
Localization. In 2021 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM) (pp. 511-517). IEEE.

• FAJARDO, J., CARDONA, D., MALDONADO, G., FERMAN, V., ROHMER, E.
(2021, December). A Robust Control Strategy for Sensorless Under-Tendon-Driven
Prosthetic Hands. In 2021 20th International Conference on Advanced Robotics
(ICAR) (pp. 581-587). IEEE.

• FAJARDO, J., CARDONA, D., MALDONADO, G., FERMAN, V., ROHMER, E.
(2023, April). Guaranteed Cost Robust Control Strategy for Sensorless Under-Tendon-
Driven Prosthetic Hands. Under review in IEEE Transactions on Mechatronics.
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2 Fundamentals

This chapter aims to present the theoretical tools and some concepts that
underpin the subsequent chapters, providing readers with key definitions for a better
understanding of the methods and results obtained throughout this thesis.

2.1 Signal and System Norms
Signal and system norms are quantitative measures used to evaluate their

behavior in control theory. Signal norms, such as the L1, L2, and L∞ norms, are used to
measure the magnitude of a signal. In contrast, system norms, such as the H2 and H∞
norms, are used to evaluate a system’s stability, robustness, and sensitivity. These norms
play a crucial role in the analysis and design of control systems, providing engineers with
a framework to optimize system performance and ensure robustness in the presence of
disturbances and uncertainties (ZHOU; DOYLE; GLOVER, 1996).

2.1.1 Basic Concepts

Normed spaces are an essential concept in linear algebra and functional analysis.
A norm is a mathematical object that assigns a non-negative real number, called the norm,
to every vector in a vector space. Most of the concepts exposed in this section can be
found in (FAIRMAN, 1998; ROMAO, 2017). A normed vector space is a vector space
equipped with a norm. Formally, a norm is defined as follows:

Let K be the field of scalars (either the real numbers R or the complex numbers
C sets), and let X be a vector space over K. A norm on X is a function ‖·‖ : X→ R ≥ 0
that satisfies the following properties for all x,y ∈ X and α ∈ K:

1. Positive definiteness: ‖x‖ = 0 if and only if x = 0.

2. Homogeneity: ‖αx‖ = |α|‖x‖.

3. Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Furthermore, a Banach space is a complete normed vector space. In other
words, it is a vector space X equipped with a norm ‖·‖ such that every Cauchy sequence
in X converges to an element in X. For example, the normed vector space C[a, b] is a
Banach space.

Considering X a normed vector space, as well as a sequence {xn} contained in
X. We say this sequence is convergent in X, that is xn → x, if ‖xn − x‖ → 0, for some
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x ∈ X. In addition, {xn} is a Cauchy sequence if ‖xn − xm‖ → 0 for natural numbers
n,m→∞.

Accordingly, the spaces `p[0,∞), for p ∈ N such that 0 < p < ∞. Thus, for
each value of p, `p[0,∞) represents the set of sequences xn with norm defined as follows

‖x‖p =
( ∞∑
i=0
|xi|p

)1/p

If p =∞, the space `∞[0,∞) represents the set of limited sequences with norm
defined with the following equation:

‖x‖∞ = sup
i
|xi|

Finally, the absolute value operator, denoted by | · |, can be replaced with the
corresponding norm to yield a more appropriate mathematical representation in vector or
matrix-based spaces. Additionally, for vector spaces equipped with an inner product, a
norm can be induced by the dot product, which is defined as follows.

‖x‖ =
√
〈x,x〉

2.1.2 Hilbert Spaces

Hilbert spaces are a type of complete inner product space (a special case of
Banach spaces) and are fundamental objects of study in functional analysis and mathe-
matical physics. For example, a Hilbert Space H is a vector space over the complex field
C that is equipped with an inner product 〈·, ·〉 : H×H→ C that satisfies the following
properties for all x, y, z ∈ H and α, β ∈ C:

1. Linearity in the first argument: 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉.

2. Conjugate symmetry: 〈x,y〉 = 〈y,x〉.

3. Positive-definiteness: 〈x,x〉 ≥ 0, with equality only if x = 0.

The norm induced by the inner product turns H into a metric space, which is
complete because every Cauchy sequence converges to an element in H. This completeness
property is crucial for many applications, such as studying infinite-dimensional systems
and developing quantum mechanics. Hilbert Spaces also provide a framework for analyzing
Fourier series, wavelets, and other mathematical objects. The mathematical properties of
Hilbert Spaces make them an essential tool for understanding and solving problems in
various fields, such as physics and engineering.
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In addition, as an example of finite-dimensional Hilbert spaces, consider Cn×m

with the following inner product.

〈A,B〉 = Tr (A∗B) =
n∑
i=1

m∑
j=1

a∗ijbij,∀A,B ∈ Cn×m

where aij and bij are elements of the matrices A and B.

The space `2 (−∞,∞) equipped with the dot product in Euclidean space is a
Hilbert space of infinite dimension. Similarly, L2(I) is the space formed by quadratically
integrable functions on an interval I ⊂ R with an inner product defined by

〈f, g〉 =
∫
I
f(t)∗g(t)dt

where f(t), g(t) ∈ L2(I). On the other hand, if the functions are vectors or matrices, the
inner product is defined by

〈f, g〉 =
∫
I

Tr (f(t)∗g(t)) dt

In addition, the vector spaces L2(−∞,+∞), L2[0,+∞) and L2(−∞, 0] receive
the following notation L2, L2+ and L⊥2 +, correspondingly (ROMAO, 2017). Therefore, for
a Hilbert space, H, consider a subset S1 ⊂ H, the orthogonal complement of S1 in H,
called S⊥1 is defined as follows.

S⊥1 = {x ∈ H : 〈x,y〉 = 0,∀y ∈ S1}

2.1.3 Hardy Spaces H2 and H∞
Hardy spaces are a family of function spaces that arise naturally in complex

and harmonic analyses. In this section, spaces formed by complex functions of complex
variables are approached. Specifically, S ⊂ C, an open subset, and a function f : S → C

are considered. The function f is considered analytic at a point z0 if it is differentiable at z0

and in a neighborhood of z0. Furthermore, it is recognized from the complex variable theory
that a function is analytic at a point z0 if and only if it has a Taylor series representation
at z0 (BROWN; CHURCHILL, 2009). Moreover, the function f is analytic on S if, for
every point z ∈ S, the function is analytic on z.

Let S ⊂ C be an open subset. The finite-dimensional space formed by functions
F : S → C such that

∫ +∞

−∞
Tr (F (jω)∗F (jω)) dω < +∞
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equipped with an inner product defined by

〈F,G〉 = 1
2π

∫ +∞

−∞
Tr (F (jω)∗G(jω)) dω

and induced norm that is given by

‖F‖2 =
√
〈F, F 〉

is denominated an L2 space.

Thus, the subsetH2 is the set of analytic functions in Re(s) > 0. The orthogonal
complement of H2, defined as H⊥2 , is formed by the set of analytic matrices in the left half
plane. This way, from the point of view of systems theory, transfer matrices associated with
stable and causal dynamic systems belong to the H2 space. On the other hand, non-causal
and anti-stable systems generate transfer matrices that belong to H⊥2 .

Therefore, being a Hilbert space, the H2 space is equipped with an inner
product and a norm defined as

‖F‖2
2 = sup

σ>0

{ 1
2π

∫ +∞

−∞
Tr (F (σ + jω)∗F (σ + jω)) dω

}
(2.1)

where F ∈ H2 (ZHOU; DOYLE; GLOVER, 1996), the following expression is equivalent
to Eq. (2.1).

‖F‖2
2 = 1

2π

∫ +∞

−∞
Tr (F (jω)∗F (jω)) dω (2.2)

Since L2, H2, and H⊥2 spaces in the frequency domain are related to the time
domain spaces previously introduced in this chapter. Note that if a function (matrix, vector,
or scalar) in time f(t) ∈ L2(∞,+∞), then the bilateral Laplace transform exists, and the
imaginary axis as belonging to the convergence region. Therefore, defining F (s) = L{f(t)},
with F (s) as the Laplace transform of the function f(t), and L : L2(∞,+∞)→ L2 as a
linear transformation between the spaces L2(∞,+∞), in the time and frequency domains.
Thus, using Parseval’s theorem, the following expression is obtained.

‖F (s)‖2 = ‖f(t)‖2

therefore, the spaces L2(∞,+∞), L2+, and L⊥2 + are related by an isomorphic linear
transformation with the spaces in the frequency domain L2, respectively H2 and H⊥2 .

Furthermore, it should be noted that the set L∞ is a Banach space, meaning it
is a complete normed vector space. However, it cannot be classified as a Hilbert space since
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it lacks an inner product. This space comprises complex functions of complex variables
bounded on the imaginary axis, which is bounded as follows.

ess sup
ω∈R

σ (F (jω)) <∞,

where σ is the maximum singular value of matrix F (jω) with norm

‖F (s)‖∞ = ess sup
ω∈R

σ (F (jω)) . (2.3)

For the case in which F (jω) is a rational function, the following expression is
equivalent

‖F (s)‖∞ = sup
ω∈R

σ (F (jω)) (2.4)

The space L∞ is associated with two subspaces: H∞ and H−∞. H∞ is composed
of analytic functions that are bounded on the imaginary axis and defined on the region
Re(s) > 0, while H−∞ consists of analytic functions that are bounded on the imaginary
axis and defined on the region Re(s) < 0. The norm on H∞ is given by:

‖F (s)‖∞ = ess sup
σ>0

σ (F (s)) = ess sup
ω∈R

σ (F (jω)) , (2.5)

while H−∞ is equipped with a norm given by:

‖F (s)‖∞ = ess sup
σ<0

σ (F (s)) = ess sup
ω∈R

σ (F (jω)) , (2.6)

This way, if F (s) ∈ H∞ or F (s) ∈ H−∞ is a rational eigenfunction, then the
norm ‖F (s)‖∞ = supω∈R σ(F (jω)).

The H∞ norm has an important interpretation in the study of time-invariant
linear systems, as it represents the value of the maximum gain, called L2 gain, between
the input and output energy when considering input signals belonging to the L2 space.

Theorem 2.1.1. Let H(s) ∈ L∞ be the transfer matrix of a linear system and time-
invariant of dimension p× q. ‖H‖∞ represents the maximum output energy gain for the
input when applying quadratically integrable input signals belonging to L2 space.

The proof of the theorem can be found in (ZHOU; DOYLE; GLOVER, 1996).

In addition, the following properties associated with the rational handover
matrices belonging to the L∞ space are essential in the context of this work.
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1. If H(s) ∈ L∞, then {Y (s) : Y (s) = H(s)U(s) : U(s) ∈ L2} ⊂ L2;

2. If H(s) ∈ H∞, then {Y (s) : Y (s) = H(s)U(s) : U(s) ∈ H2} ⊂ H2;

3. If H(s) ∈ H−∞, then {Y (s) : Y (s) = H(s)U(s) : U(s) ∈ H⊥2 } ⊂ H⊥2 .

These concepts refer to the rational matrices that belong to the space H∞,
and, therefore, it is assumed that ‖H(s)‖∞ ≤ γ implies that H(s) is a transfer matrix of a
causal and analytic system in the right half plane and, therefore, BIBO (Bounded input
bounded output) stable.

2.1.4 Linear Matrix Inequalities (LMIs)

LMIs are a powerful tools in the field of control theory for designing controllers
and analyzing the stability of dynamic systems. An LMI is an inequality that involves
matrices and can be written in the form:

F (x) =
n∑
i=0

xiFi � 0,

where F (x) is a function, such as a matrix-valued function of the variable x. The notation
"�" means "less than or equal to in the sense of positive semidefiniteness", i.e., A � 0 if
and only if xTAx ≤ 0 for all vectors x (GHAOUI; NICULESCU, 2000).

LMIs provide a general framework for modeling various constraints and ob-
jectives in control problems, such as robust stability, performance, and robustness to
disturbances and uncertainties. They can be used to formulate convex optimization
problems, which can be efficiently solved using numerical algorithms. One of the main
advantages of LMIs is their ability to handle complex nonlinearities and uncertainties in a
systematic and tractable manner. By representing nonlinear functions and uncertainties
as parameter-dependent matrices, it is often possible to transform a nonlinear control
problem into an LMI problem, which can be solved using existing convex optimization
software (GHAOUI; NICULESCU, 2000).

In addition to their use in control theory, LMIs have applications in many
other areas of science and engineering, such as signal processing, communications, and
optimization. The development of efficient numerical algorithms for solving LMI problems
has led to their widespread use in practice.

2.1.5 Finsler’s Lemma

Finsler’s Lemma is a fundamental result in differential geometry composed
of four algebraic equivalences (OLIVEIRA; SKELTON, 2007; SKELTON; IWASAKI;
GRIGORIADIS, 2013). It provides a powerful way to compute the derivative of a function
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defined on a Riemannian manifold and has numerous applications in physics and engineering.
In particular, Finsler’s Lemma is an essential tool in designing control systems using LMIs.
By leveraging Finsler’s Lemma, control engineers can optimize the performance of control
systems subject to constraints and uncertainties, leading to more robust and reliable
systems.

Lemma 2.1.2. Consider a Hermitian matrix Q ∈ Cn×n and a matrix B ∈ Cm×n with
m < n and rank(B) = r < n. Then, the following conditions are equivalent.

i) z∗Qz < 0,∀z s.t. Bz = 0.

ii) B⊥∗QB⊥ ≺ 0.

iii) ∃µ ∈ R, µ > 0 : Q− µB∗B ≺ 0.

iv) ∃X ∈ Cn×m : Q + XB + B∗X∗ ≺ 0.

The proof of the lemma can be found in (OLIVEIRA; SKELTON, 2007;
SKELTON; IWASAKI; GRIGORIADIS, 2013).

2.1.6 Projection Lemma

The Projection Lemma is a fundamental mathematical result with numerous
applications, including in the control systems engineering field. This lemma provides
alternative methods for testing the negativity of a matrix expression in two subspaces
simultaneously, which is a critical step in the analysis of linear and time-invariant dynami-
cal systems. Specifically, the Projection Lemma enables the development of alternative
conditions for calculating the H2 and H∞ norms of these systems, which are important
measures of their performance and stability. By leveraging the Projection Lemma, control
engineers can develop more efficient and accurate methods for analyzing the behavior
of dynamical systems and designing control systems that ensure stability and optimal
performance.

Lemma 2.1.3. Consider x ∈ Cn,Q = Q∈ Cn×n,S ∈ Cm×n and K ∈ Rp×n s.t. rank(S) <
n and rank(K) < n. Then, the following conditions are equivalent:

i) S⊥∗QS⊥ ≺ 0 and K⊥∗QK⊥ ≺ 0.

ii) ∃µ ∈ R, µ > 0 : Q− µS∗S ≺ 0 and Q− µK∗K ≺ 0.

iii) ∃X ∈ Cp×m : Q + K∗XS + S∗X∗K ≺ 0.

The proof of the lemma can be found in (BOYD et al., 1994; SKELTON;
IWASAKI; GRIGORIADIS, 2013).
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2.2 H2 and H∞ Norms using LMIs
This section presents the calculation of H2 and H∞ norms of transfer matrices

associated with linear and time-invariant dynamic systems using LMIs. Most of the
concepts described in this section are in (ROMAO, 2017).

Consider a state-space system

δ[x] = Ax + Bu (2.7)

y = Cx + Du

with A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n and D ∈ Rp×r, where x ∈ Rn is the state vector,
u ∈ Rr is the input vector, y ∈ Rp is the output vector, δ[x] is the derivative operator,
ẋ(t), for continuous systems, or time advance, x[k + 1], for discrete systems. In addition,
consider

H(ζ) = C (ζI−A)−1 B + D (2.8)

the rational transfer matrix associated with the system described in Eq. (2.7), where ζ
is the Laplace variable s in the case of continuous systems or the complex variable z for
discrete systems.

2.2.1 H2 Norm

To derive conditions using LMIs for calculating the H2 norm of the system
described in Eq. (2.7), it is important to note that the model represents causal systems in
the continuous case, meaning their impulse response h(t) is zero for t < 0. As a result, the
corresponding transfer matrices described in Eq. (2.8) belong to the space H2 if and only
if h(t) ∈ L2[0,+∞). This condition implies that matrix A is Hurwitz, and must have all
eigenvalues having negative real part, and matrix D is zero (ZHOU; DOYLE; GLOVER,
1996).

In the discrete case, h[k] ∈ L2[0,+∞) if and only if the matrix A is Schur stable,
and must have all eigenvalues lying within the unit circle of the complex plane. These
conditions provide necessary and sufficient conditions for the H2 norm of the system, which
can be calculated using LMIs for continuous and discrete systems. Therefore, understanding
the nature of causal systems in the continuous case and Schur stability in the discrete
case is crucial to deriving quadratic stability conditions using LMIs for calculating the H2

norm of the system, as presented by (ZHOU; DOYLE; GLOVER, 1996).
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At this point on, when mentioning the H2 norm of a transfer matrix, it is
implicitly assumed that the restrictions above are imposed on the model described in
Eq. (2.7).

2.2.1.1 Continuous-time Systems

Considering the expression described in Eq. (2.2), if the transfer matrix H(s)
described in Eq. (2.8) belongs to the space H2, the norm is defined by

‖H(s)‖2
2 = 1

2π

∫ +∞

0
Tr (H(jω)∗H(jω)) dω =

∫ +∞

0
Tr(h(t)h∗(t))dt, (2.9)

where

h(t) =
 CeAtB, t ≥ 0,

0, t < 0.

Therefore, by substituting the expression for h(t) in Eq. (2.9), the following
result for the calculation of the H2 norm of the continuous system described in Eq. (2.8)
is obtained.

Lemma 2.2.1. Consider the controllable and observable continuous system described
by Eq. (2.8), where matrix A is Hurwitz and matrix D = 0. The value of the norm H2

(squared) of the transfer matrix H(s) is given by

‖H(s)‖2
2 = Tr(BTPB) = Tr(CWCT ) (2.10)

where P = PT � 0 and W = WT � 0 are the solutions for the following quadratic
Lyapunov equations for continuous systems:

ATP + PA + CTC = 0, (2.11)

AW + WAT + BBT = 0. (2.12)

P and W matrices called the observability and controllability gramians, respectively.

These equations, (2.11)–(2.12), have unique, symmetric, positive definite so-
lutions if matrix A is Hurwitz and if (A,C) is observable, or if (A,B) is controllable
(properties of the solution of the Lyapunov equation). Therefore, using the result of
Lemma 2.2.1, the norm H2 of the system described in Eq. (2.7) can be calculated by the
expression described in (2.10) from the solution of the Eqs. (2.11) or (2.12).
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Alternatively, using the results presented by (RAN; VREUGDENHIL, 1988),
the calculation of the H2 norm of a system as the one described in (2.7) can be formulated
through a convex optimization problem with LMIs constraints (OLIVEIRA, 1999). However,
this methodology is not considered for filtering design in posterior sections.

2.2.1.2 Discrete-time Systems

In the same way as the continuous systems case, the following expression
calculates the H2 norm of the discrete transfer matrix described in Eq. (2.8).

‖H(z)‖2
2 = 1

2π

∫ π

−π
Tr
(
H(ejω)∗H(ejω)

)
dω =

+∞∑
k=0

Tr (h[k]∗h[k]) (2.13)

where the sequence h[k] is the impulse response of the discrete system described in Eq. (2.7)
given by

h[k] =
 CAk−1B, k > 0,

D, k = 0.

Therefore, substituting h[k] into Eq. (2.13), the following result is obtained
(analogous to the Lemma 2.2.1 for continuous systems).
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Lemma 2.2.2. Considering the discrete system described in Eq. (2.7), with a stable A
Schur matrix. Then,

‖H(z)‖2
2 = Tr

(
BTPB + DTD

)
= Tr

(
CWCT + DDT

)
(2.14)

where P = PT � 0 and W = WT � 0 are the solutions for the following quadratic
Lyapunov equations for discrete systems:

ATPA−P + CTC = 0, (2.15)

AWAT −W + BBT = 0. (2.16)

P and W matrices called the observability and controllability gramians, respectively.

Similarly to the continuous case, as matrix A is Schur stable, the matrices P
and W are positive definite. The H2 norm for discrete systems can be determined using
LMIs (OLIVEIRA, 1999). However, this methodology is not considered for filtering design
in posterior sections.

2.2.2 H∞ Norm

Even though Eqs. (2.10-2.12) and (2.13-2.16) are crucial for comprehending
optimal and resilient control, the focus of this study is mainly on computing the H∞ norm
of filter-based estimators for discrete systems, especially since do not take any assumptions
about noise. Nonetheless, the continuous systems will be considered before delving into
the discrete systems case.

2.2.2.1 Continuous-time Systems

Considering dynamic systems whose transfer matrices are rational and that
belong to the H∞ space (causal and analytic in the closed right half-plane), the transfer
matrix is bounded on the imaginary axis and has a norm H∞ given by

‖H(s)‖∞ = sup
ω>0

σ (H(jω)) .

Therefore, from the result of Theorem 2.1.1 (as well as the discrete equivalent),
the following result is established for calculating the H∞ norm of the linear and time-
invariant system given in Eq. (2.7).

Lemma 2.2.3. Considering the time-invariant linear continuous system given in Eq. (2.7).
The following conditions are equivalent:
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i) ‖H(s)‖∞ < γ.

ii) There is a symmetric matrix 0 ≺ P ∈ Rn×n such that
ATP + PA PB CT

BTP −I DT

C D −γ2I

 ≺ 0. (2.17)

Proof. From the Theorem 2.1.1, it is known that ‖H(s)‖∞ < γ if, and only if,

‖y(t)‖2
2 ≤ γ2‖u(t)‖2

2. (2.18)

Note that if H(s) is rational and analytic in the closed right half plane is the
same as guaranteeing that the matrix A in the system described in (2.7) is Hurwitz.
That is, there exists a symmetric matrix P � 0 such that the derivative of the quadratic
Lyapunov function on the states, v(x(t)) = x(t)TPx(t), is negative as follows:

x(t)T (ATP + PA)x(t) + 2u(t)TBTPx(t) < 0. (2.19)

This way, the following inequality is obtained by rewriting Eq. (2.18) using dot
products and adding the resulting inequality with Eq. (2.20).

x(t)T (ATP + PA)x(t) + 2u(t)TBTPx(t) + y(t)Ty(t)− γ2u(t)Tu(t) < 0. (2.20)

Thus, by substituting the expression for y(t) from Eq. (2.7) into Eq. (2.20), the
following expression is obtained.

[
x(t)Tu(t)T

]  ATP + PA + CTC PB + CTC
BTP + DTC DTD− γ2I

 x(t)
u(t)

 < 0. (2.21)

Since the inequality described in (2.21) must be valid for all t ≥ 0, ∀x(t) as
well as for ∀u(t), then

 ATP + PA + CTC PB + CTC
BTP + DTC DTD− γ2I

 ≺ 0. (2.22)

Therefore, the result presented in Eq. (2.17) follows by applying the Schur
complement to the expression described in Eq. (2.22). This way, the value of the norm
H∞ can be obtained from the following convex optimization problem
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‖H(s)‖2
∞ = min γ2

subjected to the LMI described in Eq. (2.17).

2.2.2.2 Discrete-time Systems

In the discrete case, systems are considered in which the transfer matrix is
limited to the unit circle, with norm H∞ given by

‖H(z)‖∞ = sup
ω∈[−π,π]

σ
(
H(ejω)

)
.

Lemma 2.2.4. Considering the discrete system represented by Eq. (2.7), the following
conditions are equivalent.

i) ‖H(z)‖∞ < γ.

ii) There exist a symmetric matrix 0 ≺ P ∈ Rn×n such that
ATPA−P ATPB CT

BTPA BTPB− γ2I DT

C D −I

 ≺ 0. (2.23)

The proof of this Lemma is carried out in the same way as in the continuous
case. In this way, the norm H∞ is obtained by solving the following convex optimization
problem:

‖H(z)‖2
∞ = min γ2

subjected to the LMI described in Eq. (2.23).
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2.3 Bayesian Filters
Most of the concepts in this section can be found in (THRUN, 2002). Bayesian

filters are a class of probabilistic algorithms used for estimating the state of a system
based on noisy measurements. Given the available measurements, these filters recursively
update the probability distribution over the system state.

The basic idea behind a Bayesian filter is to maintain a probability distribution
bel(xt) over the system’s state at time t, based on all the available measurements up to
that point. This distribution is called the belief state, representing the best estimate of
the system state given the available information. The belief state is updated recursively
using the Bayes rule:

bel(xt) = p(zt|xt) ·
∫
p(xt|xt−1,ut) · bel(xt−1)dxt−1

p(zt)

where p(zt|xt) is the likelihood function, representing the probability of observing the
measurement zt given the state xt. The integral

∫
p(xt|xt−1,ut) · bel(xt−1)dxt−1 is the

prediction step, which represents the probability of the state at time t given the state at
time t− 1 and the control input ut, and p(zt) is the normalization constant, which ensures
that the belief state is a valid probability distribution.

The Bayesian filter can be divided into two main steps: the prediction step
and the measurement update step. In the prediction step, the belief state is updated
based on the control input ut and the transition model p(xt|xt−1,ut), which represents the
probability of the state at time t given the state at time t− 1 and the control input ut:

bel(xt) =
∫
p(xt|xt−1,ut) · bel(xt−1)dxt−1

where bel(xt) is the predicted belief state.

In the measurement update step, the belief state is updated based on the
measurement zt and the likelihood function p(zt|xt):

bel(xt) = p(zt|xt) · bel(xt)
p(zt)

where bel(xt) is the updated belief state.

Many applications use Bayesian filters, such as robot localization, object track-
ing, and signal processing. They are particularly useful when the system’s state is not
directly observable and must be inferred from noisy measurements.
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2.3.1 Kalman Filter

KF is a mathematical algorithm widely used in control systems and robotics
to estimate the state of a dynamic system based on noisy measurements. The KF is based
on the principle of Bayesian inference, which allows us to update our beliefs about the
state of a system as we receive new information.

This filter assumes that the system’s state can be modeled as a linear function
of the previous state plus some Gaussian noise. The state of the system is represented as
a vector xk at time k, and the linear function models the system dynamics:

xk = Fkxk−1 + Bkuk + wk

where Fk is the state transition matrix, Bk is the control input matrix, uk is the control
input vector, and wk is the process noise vector, which is assumed to be Gaussian with
mean zero and covariance matrix Qk.

At each time step k, the KF receives a noisy measurement of the system’s state,
represented as a vector zk. The measurement is modeled as a linear function of the true
state plus some Gaussian noise:

zk = Hkxk + vk

where Hk is the measurement matrix and vk is the measurement noise vector, which is
assumed to be Gaussian with mean zero and covariance matrix Rk.

The KF estimates the true state of the system by combining the prior estimate
with the current measurement. The prior estimate is obtained by propagating the previous
estimate through the system dynamics. This filter uses the covariance matrices Pk−1 and
Qk to estimate the covariance matrix of the prior estimate:

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk

Pk|k−1 = FkPk−1|k−1FT
k + Qk

where x̂k−1|k−1 and Pk−1|k−1 are the estimated state and covariance matrix at the previous
time step, respectively.

The KF then combines the prior estimate with the current measurement to
obtain the posterior estimate of the state and also uses the covariance matrices Pk|k−1 and
Rk to estimate the covariance matrix of the posterior estimate:

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
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2.3.2 Extended Kalman Filter

The EKF is a variant of the Kalman Filter that can handle nonlinear system
dynamics and nonlinear measurement functions. The EKF works by approximating the
nonlinear functions with linear functions using a first-order Taylor series expansion.

This filter assumes that the system’s state can be modeled as a nonlinear
function of the previous state plus some Gaussian noise. The state of the system is
represented as a vector xk at time k, and the nonlinear function models the system
dynamics:

xk = f(xk,uk) + wk

where f is the nonlinear function that describes the system dynamics, uk is the control
input vector, and wk is the process noise vector, which is assumed to be Gaussian with
mean zero and covariance matrix Qk.

At each time step k, the EKF receives a noisy measurement of the state of the
system, represented as a vector zk. The measurement is modeled as a nonlinear function
of the true state plus some Gaussian noise:

zk = h(xk) + vk

where h is the nonlinear function that describes the measurement function and vk is the
measurement noise vector, which is assumed to be Gaussian with mean zero and covariance
matrix Rk.

To use the EKF to estimate the state of the system, we need to linearize the
nonlinear functions around the current state estimate. We can do this by taking the
first-order Taylor series expansion of the nonlinear functions:

f(xk,uk) ≈ Fkxk−1 + Gkuk

h(xk) ≈ Hkxk

where Fk and Gk are the Jacobians of the nonlinear function f with respect to the state
and control inputs, respectively, and Hk is the Jacobian of the nonlinear function h with
respect to the state.

Using the linearized functions, we can apply the standard KF equations to
estimate the system’s state. The EKF updates the prior estimate of the state in the same
way as the KF:
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x̂k|k−1 = f(x̂k−1|k−1,uk)

Pk|k−1 = FkPk−1|k−1FT
k + GkQkGT

k

where x̂k−1|k−1 and Pk−1|k−1 are the estimated state and covariance matrix at the previous
time step, respectively.

2.3.3 Particle Filter

The PF is a probabilistic filtering algorithm that can handle nonlinear and
non-Gaussian systems. This filter represents the belief about the system’s state as a set
of particles, each representing a possible state of the system. The particles are sampled
from the prior distribution, which is the distribution of the state of the system at the
previous time step. Each particle is assigned a weight that reflects how well it explains the
measurements.

At each time step, the PF applies a two-step process to update the set of
particles. The first step is the prediction step, which updates the particles based on the
system dynamics:

x[i]
k = f(x[i]

k−1,uk) + w[i]
k

where x[i]
k is the state of the i-th particle at time k, f is the system dynamics function, uk

is the control input at time k, and w[i]
k is the process noise that affects the i-th particle at

time k.

The second step is the measurement update step, which updates the weights of
the particles based on how well they explain the measurements:

w
[i]
k ∝ p(zk|x[i]

k )

where zk is the measurement at time k, and p(zk|x[i]
k ) is the likelihood of the measurement

given the i-th particle.

The algorithm resamples the particles according to their weights to avoid
particle impoverishment. The resampling process generates a new set of particles with
higher weights and discards those with lower weights. The new set of particles represents
a better approximation of the true posterior distribution. The PF is a powerful tool for
probabilistic filtering in nonlinear and non-Gaussian systems. However, it may suffer from
particle degeneracy and poor sampling efficiency in high-dimensional spaces.
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2.4 Differential Wheeled Robot
Most of the concepts in this section can be found in (SIEGWART; NOUR-

BAKHSH; SCARAMUZZA, 2011; THRUN, 2002). A Differential Wheeled robot is a type
of mobile robot that uses two independently driven wheels to move and turn. The name
comes from the fact that the wheels on either side of the robot can be driven at different
speeds, allowing the robot to turn by varying the speed of each wheel.

The kinematics of a Differential Wheeled robot (as shown in Fig. 2.1) can be
described using the following equations:

v = r

2(ωr + ωl)

ω = r

b
(ωr − ωl)

where v is the linear velocity of the robot, ω is its angular velocity, r is the radius of the
wheels, b is the distance between the wheels, ωr is the angular velocity of the right wheel,
and ωl is the angular velocity of the left wheel. These equations show that the robot will
move forward in a straight line if both wheels are driven at the same speed. If the speeds
of the two wheels are different, the robot will turn, with the direction and rate of turning
determined by the difference in speeds.

Differential Wheeled robots are commonly used in robotics research and ap-
plications, as they are relatively simple and easily controlled. However, they have some
limitations, such as difficulty accurately measuring the robot’s position and orientation,
especially on uneven or slippery terrain.

2.4.1 Dead-Reckoning

Dead-reckoning is a method that autonomous mobile robots use to estimate
their pose (position and orientation) by keeping track of their movements over time. This
method relies on measuring the robot’s speed and direction of movement and integrating
these measurements to calculate the robot’s pose. Let ∆t be the time interval between
two successive measurements of the robot’s speed and direction, v be the robot’s linear
speed, and ω be the robot’s angular speed.

Then, the robot’s position and orientation can be estimated using the following
equations:

∆x = ∆tv cos(θ)

∆y = ∆tv sin(θ)

∆θ = ∆tω
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where θ is the robot’s orientation relative to some reference frame. By integrating these
equations over time, the robot’s position and orientation can be updated as follows:

xt = xt−1 + ∆xt

yt = yt−1 + ∆yt

θt = θt−1 + ∆θt

where (xt, yt) is the robot’s position at time t and θt is the robot’s orientation at time
t. However, dead-reckoning has some inherent errors that accumulate over time due to
inaccuracies in the robot’s speed and direction measurements and external factors such as
wheel slippage and terrain irregularities. These errors may lead to significant deviations
from the robot’s true position and orientation, especially over long distances. Finally,
this method is often combined with other localization methods, such as landmark-based
localization or odometry correction, to mitigate these errors. These methods use external
reference points, such as visual landmarks or beacons, to correct the robot’s estimated
position and orientation and improve its overall accuracy.

2.4.2 Markov Localization

Markov Localization is a technique for estimating the robot’s state in an
environment given its sensor measurements and actions. In this approach, the robot’s
state is modeled as a probability distribution over a discrete set of possible locations or
poses. The belief of the robot’s state is updated recursively based on its sensor readings

Figure 2.1 – Pioneer P3DX differential wheeled robot from Adept Robots into an indoor
environment.
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and actions. Let xt be the true state of the robot at time t, and let z1:t and u1:t be the
sequences of all sensor measurements and actions up to time t, respectively. The goal of
this localization algorithm is to estimate the belief bel(xt), the probability distribution of
the robot’s state at time t given all the available sensor measurements and actions:

bel(xt) = p(xt|z1:t,u1:t)
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This distribution is updated recursively using Bayes’ rule:

bel(xt) = ηp(zt|xt)
∑
xt−1

p(xt|xt−1,ut)bel(xt−1)

where η is a normalization constant to ensure that bel(xt) is a valid probability distribution,
p(zt|xt) is the likelihood of the sensor measurement zt given the robot’s state xt, and
p(xt|xt−1,ut) is the transition probability of moving from state xt−1 to state xt given the
action ut. The summation is over all possible states xt−1 that could have led to the current
state xt.

This localization algorithm initializes the belief bel(x0) as a uniform distribution
over all possible states. Then, at each time step t, it updates the belief using the above
recursive formula, based on the current sensor measurement zt and action ut. The resulting
belief bel(xt) represents the robot’s estimate of its state at time t and can be used
for planning and control purposes. Markov Localization is a powerful technique for
robot localization in uncertain environments and has been widely used in many robotics
applications. However, it can be computationally expensive, especially in large environments
or high-dimensional state spaces. Various approximations and optimizations, such as
particle filters and grid-based methods, have been developed to address these issues.

2.4.3 Kalman Filter Localization

The KF Localization algorithm is a technique for estimating the robot’s state in
an environment, given its sensor measurements and actions. In this approach, the robot’s
state is modeled as a continuous vector, and the belief of the robot’s state is represented
as a Gaussian distribution over this vector. Let xt be the actual state of the robot at
time t, and let z1:t and u1:t be the sequences of all sensor measurements and actions up
to time t, respectively. The goal of Kalman Filter Localization is to estimate the belief
bel(xt), the Gaussian distribution of the robot’s state at time t given all the available
sensor measurements and actions:

bel(xt) = N (xt|µt,Σt)

where µt is the mean of the Gaussian distribution, and Σt is its covariance matrix.

The Kalman Filter Localization algorithm updates the belief recursively based
on the sensor measurements and actions using the following steps:

1. Prediction: the algorithm predicts the robot’s state after executing the current action
ut, based on the previous belief bel(xt−1) and the motion model p(xt|xt−1,ut):
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2. Correction: the algorithm corrects the predicted belief based on the sensor measure-
ment zt, using the observation model p(zt|xt):

This localization algorithm initializes the belief bel(x0) as a Gaussian distribu-
tion with a known mean and covariance. Then, at each time step t, it updates the belief
using the above recursive formula, based on the current sensor measurement zt and action
ut. The resulting belief bel(xt) represents the robot’s estimate of its state at time t and
can be used for planning and control purposes. Finally, its main drawback is that systems
must be linear, and the robot’s state needs to be Gaussian.

2.4.4 Extended Kalman Filter Localization

The EKF is a widely used technique for state estimation and localization in
robotics. It is an extension of the KF capable of handling non-linear systems by linearizing
the system dynamics and measurement models around the current estimate. In robot
localization, the EKF estimates the robot’s pose in a known environment, given noisy
sensor measurements. The EKF maintains a probability distribution over the robot’s pose,
which is updated based on the robot’s motion and sensor measurements.

The EKF localization algorithm also consists of two main steps: the prediction
step and the update step. In the prediction step, the EKF uses the motion model to predict
the robot’s pose at the current time step based on its previous pose and control inputs.
The motion model is typically non-linear and includes uncertainties due to control noise
and model inaccuracies. In the update step, the EKF uses the sensor measurements to
correct the predicted pose. The sensor measurements are typically noisy and nonlinear
and, therefore, cannot be directly incorporated into the prediction step. Instead, the
EKF linearizes the measurement model around the predicted pose to obtain a linear
approximation of the measurement model. This localization algorithm is an iterative
process that alternates between the prediction and update steps, using the updated
probability distribution from the previous time step as the prior for the current prediction
step. This algorithm is computationally efficient and can handle nonlinear motion and
measurement models, making it a popular choice for localization in robotics. However,
there are several issues with using an EKF to model a Gaussian process.

Firstly, the EKF relies on linearizing the system dynamics, which may result
in inaccurate predictions when dealing with highly nonlinear systems. This may lead to
poor performance, especially in cases where the system dynamics are changing rapidly.
Secondly, the EKF assumes that the process and measurement noise are Gaussian and
independent. In practice, this assumption may not hold, especially when dealing with
real-world data that is subject to various types of noise and uncertainty. This may result
in biased estimates and suboptimal performance. Thirdly, the EKF requires an explicit
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definition of the process and measurement models, which may not always be possible
or accurate. This may be especially problematic when dealing with complex non-linear
systems, where it may be difficult to accurately model the dynamics. Finally, the EKF
requires the estimation of many parameters, such as the mean and covariance of the
Gaussian process and the noise parameters. Estimating these parameters accurately can
be challenging, especially when dealing with high-dimensional or noisy data.

2.4.5 Monte Carlo Localization

The Monte Carlo Localization (MCL) algorithm, also known as PF Localization,
is a technique for estimating the state of a robot in an environment given its sensor
measurements and actions. Unlike KF Localization algorithm, MCL does not assume a
Gaussian distribution for the robot’s state but represents the belief as a set of weighted
particles, each representing a possible hypothesis of the robot’s state. This algorithm is a
powerful technique for robot localization in uncertain and nonlinear environments and
has been widely used in many robotics applications. However, it suffers from the particle
degeneracy problem, where the weights of most particles become very small over time,
leading to poor sampling efficiency and loss of representativeness.



CHAPTER 2. FUNDAMENTALS 50

2.5 Galileo Hand
The Galileo Hand (illustrated in Fig. 2.2) is an affordable, open-source and UTD

myoelectric upper-limb prosthesis designed for unilateral transradial amputees (FAJARDO
et al., 2017; FAJARDO et al., 2020). The distal, proximal, and middle phalanges conform
each digit, with the following three: distal and proximal interphalangeal (DIP and PIP)
and the metacarpophalangeal (MCP) one, as illustrated in Fig. 2.5). In addition, every
finger has 3 degrees of freedom (DOF). Each finger has attached a geared brushed DC
motor with an output torque of around 0.42 Nm that drives every limb with a gear ratio of
250:1, which results in one degree of actuation (DOA) for each digit. In addition, the thumb
mechanism functions differently, as it possesses only two DOA: one for the flexion and
extension processes and another for the abduction and adduction movements (FAJARDO
et al., 2020).

The Galileo Hand’s design is underactuated with the aim to simplify the
manufacturing and assembling processes, as well as to assimilate the human hand’s
movements and reduce costs. In addition, adaptive grasping can be achieved with such an
actuation system, as explained in (TAKAKI; OMATA, 2011; DARIO et al., 2000), which
consists of interacting with objects during ADLs. The main modules in the prosthesis are
the palm, the thumb rotation mechanism, and the fingers, which vary only in the length
of each phalanx.

Figure 2.2 – Mechanical design of the Galileo Hand.
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Figure 2.3 – Top view of the modular palm sections. (1) The main PCB board controller.
(2) Motors driving the index, middle, ring and little fingers. (3) Actuator in
charge of the rotation of the thumb.

2.5.1 Palm Design and Mechanisms

The design requirements were set up with the help of two male volunteers
suffering from unilateral, transradial amputation and considering the results from the
reported users’ needs in (CORDELLA et al., 2016). The mechanism consists of Micro-metal
brushed DC gear motors (250:1) with an output torque of around 0.42 Nm, which perform
the flexion/extension movements of the five fingers through an under-tendon-actuated
system.

The palm has three different sections with individual covers, one for the six
motors that drive each digit but the thumb, another for the actuator that enables the
thumb rotation, and the last one for the rest of the components, as it is shown in Fig. 2.3.
Such a design allows for easy maintenance without disassembling the whole prosthetic
hand.

2.5.2 Thumb Movement Characteristics

The thumb has been designed with two DOAs to recreate the six movements
that humans can perform, as described in (KAPANDJI, 1971). One actuator is located
inside the thumb metacarpal phalanx, responsible for the flexion and extension of the
proximal and distal phalanges. The second one, located in the metacarpophalangeal joint
of the thumb, is responsible for its abduction and adduction, which is monitored by the
reading of a quadrature encoder. This joint is built by a bevel and a helical gear working
together to transmit the torque from the actuator with a ratio of 8:11, creating a beveloid
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Figure 2.4 – Thumb mechanism side view, beveloid gear pair.

gear pair (ZHU et al., 2012), as shown in Fig. 2.4. Rotating the thumb around an axis
shifted 15◦ from the palm plane increases the abducted position of the thumb. This way,
the rotation axis is shifted without inclining the motor, allowing it to perform a larger
prismatic grasp (CUTKOSKY, 1989) while simultaneously saving space inside the palm
and making it easier to manufacture using 3D printing technology.

2.6 The Under-tendon-driven Machine
The finger’s flexion and extension process is achieved using active and passive

tendons (illustrated in Fig. 2.5). The active one is a waxed nylon cord actuated by its
corresponding motor, closing the digit. The passive one is a round, surgical-grade elastic
that springs the finger back open.

This results in a positive tensile force, fta, when the motor coils the string; and
a passive one, fte, which is uniquely dependant on the deflection of the joints, opposing
itself to its active counterpart (OZAWA; HASHIRII; KOBAYASHI, 2009; FAJARDO et
al., 2020). Thus, the relationship for the generalized coordinates, q = [q1 q2 q3]T , of a
finger and the motor angle vector, θ = [θ 0]T , with, θ, as the gearhead’s angular position,
is given by the following expression

q = J+
j [ l − l0 − Jaθ ] + q0 (2.24)

where, l = [ la le ]T , is the deflection of the active and passive tendons (la and le,
correspondingly); q0 are the initial angular displacement of the joints, l0 = [ 0 le0 ]T the
initial expansion of the tendons; and

Ja =
 ra 0

0 0
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Figure 2.5 – UTD system,where r1, r2, r3 and ra, are the pulleys’ radix; θ, the gearhead
shaft’s angular position; l1, l2 and l3 the length of each phalanx and τ1, τ2
and τ3 the joint’s torque.

the Jacobian matrix related to the actuator, such that ra is the motor’s gearhead shaft
pulley radius.

Besides,
(
JTj
)+

is the Moore-Penrose pseudoinverse of the transposed Jacobian
matrix Jj composed by the active and passive tendons as Jj = [ Jja Jje ]T , which results
in the following expression (for a two-tendon, L = 2, and three-jointed, N = 3, model)

Jj =
 r1 r2 r3

−r1 −r2 −r3

 (2.25)

considering that r1, r2 and r3 are the radius of the MCP, PIP and DIP joints, respectively.

Hence, the torque exerted by each joint, τ ∈ RN , and the tensile force, f t ∈ RL

such that f t = [ fta fte ]T can be determined as follows

τ = −JTj f t (2.26)

f t = f b −
(
JTj
)+
τ (2.27)

with f b ∈ RL being a bias force vector that prevents the tendons from loosening and
defined as follows

f b = Aξ , A =
[
IL − (JTj )+JTj

]
(2.28)
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such that ξ is a compatible dimensional vector with A and IL is the identity matrix of
size L.

Since a positive initial expansion of the passive tendon, le0, is considered for
each finger, f b > 0, and rank(Jj) = 1 < N, resulting in a UTD mechanism described by
the following dynamic system.

M (q) q̈ + C (q, q̇) q̇ + Gg (q) + JTj f t = 0 (2.29)

Jmθ̈ + bθ̇ + rpfta = τm (2.30)

where M (q) is the inertia matrix of the finger, C (q, q̇) is the Coriolis matrix and Gg (q)
is the gravity load matrix. Furthermore, Jm, are the gearhead’s moment of inertia, b, is
the damping coefficient, τm, the torque exerted by the motor gearhead’s shaft, and rp, the
radius of the pulley (OZAWA; HASHIRII; KOBAYASHI, 2009).

2.7 User-prosthesis Interface
Several works in the literature present substantial progress in advanced bionic

prosthetic devices in recent years, offering people with disabilities many different alterna-
tives and characteristics to improve their condition. This progress includes promisingly
works in haptics (CHORTOS; LIU; BAO, 2016; JIMENEZ; FISHEL, 2014) and diverse
methods to recover and interpret the user intent (MOUTOPOULOU et al., 2015; HOTSON
et al., 2016; NAVARAJ et al., 2015; JOHANSEN et al., 2016). Some methods to operate
upper-limb prostheses control the prosthetic device using user-prosthesis interfaces (UPIs)
that exclusively analyze a specific activation profile based on processing electromyogra-
phy (EMG) signals. Some of such iterations substitute the visual stimuli by utilizing
other types of feedback, like vibrotactile ones (CIPRIANI et al., 2008). Moreover, others
include implants that utilize Bluetooth or radio channel waves to communicate with
them (MOUTOPOULOU et al., 2015; MIOZZI et al., 2018; STANGO; YAZDANDOOST;
FARINA, 2015). These versions use wireless charging to function and regulate the power
dissipation inside a safe range to avoid damage to the user’s skin tissue.

Some approaches use brain-machine interfaces (BMI) to control these devices,
eliminating any visual stimulus to interact with the artificial limb and resembling how limbs
are usually operated. Newer methodologies are based on high-density electrocorticography
(ECoG), which allows the patient to control each finger individually through an adequate
reinnervation process (HOTSON et al., 2016). However, these interfaces require very
intrusive and expensive procedures. Other projects utilize interaction processes that do not
seem intuitive to the users, employing more creative approaches to analyzing the EMG
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signals by using other members to drive the movements of the prosthetic limb, as shown
on (NAVARAJ et al., 2015) and (JOHANSEN et al., 2016), which use the toes and the
tongue, respectively. Such techniques result in viable alternatives, especially for bilateral
amputees. However, there may be better options than such methodologies for unilateral
transradial amputees since they affect how some typical activities of daily living (ADLs)
must be carried out.

Alternatively, most sophisticated research assistive devices are based on mul-
timodal approaches. These methodologies usually consist of taking a set of predefined
and well-known EMG features and complementing them with information from other
kinds of sensors like inertial measurement units (IMUs), micro-electromechanical systems
(MEMS) microphones, mechanomyography (MMG), or force myography (FMG) showing a
substantial improvement in classification rates and bimanual performance (GUO et al.,
2017; VOLKMAR et al., 2019; FUJIWARA; SUZUKI, 2018; JIANG et al., 2017). This
approach has been used successfully to improve the user control of prosthetic devices
in different manners, such as using a multimodal system with Radio Frequency Identi-
fication (RFID) tags on specific objects. In this stance, the cognitive effort is reduced
to operate an upper-limb prosthetic device and address some of the well-known issues
of EMG techniques, such as the limb position effect (TRACHTENBERG et al., 2011;
FOUGNER et al., 2012; FOUGNER et al., 2011). Other stances have been considered using
the multimodal approach, such as utilizing voice control in tandem with visual feedback
through a small embedded touchscreen LCD, providing the users with other alternatives
to control their prosthetic device in different manners (FAJARDO; LEMUS; ROHMER,
2015; FAJARDO et al., 2017). Other studies have been conducted to increase upper-limb
prostheses’ functionality, combining surface EMG (sEMG) and deep-learning-based arti-
ficial vision systems. This approach works by associating a subset of predefined objects
to a list of specific grasp based on the target’s geometric properties, which are gathered
by different types of cameras. Such classification processes are fulfilled via convolutional
neural networks (CNN) employing customized image object classifiers.

2.7.1 High Level Controller

The Galileo Hand incorporates a Myo armband to gather and interpret eight
channels of sEMG with an HM-10 Bluetooth Low Energy (BLE) module to transmit
interpreted poses to the main MCU of the prosthetic device, as well as an intelligent µLCD
(4D-Systems’ 1.44" µLCD-144-G2) for visual feedback. This way, utilizing the MyoBridge
library and adapting the hardware according to the architecture proposed in (RYSER
et al., 2017) allows a successful exchange of information between the components. The
gathered information is later transferred to an ATmega328P (secondary microcontroller
unit) and posteriorly to the main MCU to drive each DC motor, illustrated in Fig. 2.6. This
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Figure 2.6 – System block diagram showing the embedded controller architecture and the
integration with external modules.

complementary MCU is responsible for acquiring the user intent as raw EMG signals or
Myo-specific poses. Consequently, it converts them into packages transmitted via Universal
Asynchronous Receiver/Transmitter (UART) to the Galileo Hand’s main MCU. The HM-
10’s firmware was flashed with the MyoBridge program, using RedBearLab’s CCLoader as
an aide for this procedure to function aptly. This way, the armband may connect with the
BLE module to transmit raw EMG signals or interpreted poses correctly.

Packet reception is handled using UART interruptions. Once the package is
received, it is evaluated, and action is taken based on the transmission content. If the
message contains a Myo-specific pose, it triggers transitions between Finite State Machines
(FSM) states used to implement the UPI that controls the prosthetic device and alters
the information presented on the screen. In that case, a notification via another UART
port is sent to the independent µLCD’s microcontroller to present visual feedback to the
user. On the other hand, if the message contains raw EMG signals, the device fills up
two circular buffers of signals collected by the electrodes placed near the palmaris longus
and the extensor digitorum muscles (for unilateral below-elbow disarticulations). This
way, customized methods to interpret the user intention can be used to adapt the bracelet
to the prosthesis, such as works presented in (ATASOY et al., 2016; VISCONTI et al.,
2018). Then, once the user’s intent has been received, a high-level controller (HLC) uses
this information to perform the necessary action that each finger must take to achieve
predefined gestures and grips available to the user.

2.7.1.1 Gestures adapted to the prosthesis

Below is a clear and detailed explanation of the various gestures and grips that
users can perform through the UPI of the prosthesis. Some of them are illustrated in Fig.
2.7.

1. "Close": This grasp involves flexion of all the fingers and rotation of the thumb.

2. "Hook": In this grasp, the thumb is the only finger extended and adducted.

3. "Lateral": Coiling of the strings of all fingers occurs, with the thumb abducted.
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4. "Pinch": This grasp involves flexion of the index and thumb, along with abduction of
the thumb, enabling a precision grasp.

5. "Point": All motors are actuated except for the index finger.

6. "Peace": All fingers are closed except for the index and middle finger.

7. "Rock": Flexion of all fingers except the index and little finger, with the thumb
adducted.

8. "Aloha": The index, middle, and annular fingers are flexed.

9. "Three": All motors are actuated except for the index, middle, and annular fingers.

10. "Four": Similar to the previous gesture, but with the little finger extended.

11. "Fancy": The only extended finger is the little finger, with an adducted thumb.

12. "Index": In this grasp, the only flexed finger is the one giving the name to the action.

2.7.1.2 Multimodal approach using buttons and Myo interface

The interface selected to operate the prosthesis was selected based on the
results obtained in (FAJARDO et al., 2021). This interface operates either by receiving
gestures from the Myo armband or push buttons installed on the hand’s dorsal side to
select a grip from the graphical menu or to perform an action (FAJARDO et al., 2017). The
functionality of this UPI is shown in the FSM in Fig. 2.8. Both the buttons, B = {b0, b1},
and a reduced muscle contractions subset, Q = {q0, q1}, corresponding to Thalmic Labs’
"Myo poses", are used to operate the prosthesis. Performing "wave out", q0, and "wave
in", q1, hand extension and flexion, respectively, as well as b0 and b1, causes a forward or
backward switch of the selected element in the menu displayed on the screen (shown in
Fig. 2.9); this process is represented by the state S1.

Figure 2.7 – The image shows the Galileo Hand grabbing the objects used in the trials.
(a) Holding a "water bottle"; (b), holding a small plastic "ball"; (c), holding a
"wallet" and (d), "pointing".
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Figure 2.8 – Finite State Machine showing the behavior of the interface using buttons and
the Myo to operate. S0 indicates that the hand is completely open; S1, that
there was a change in the selected grip; S2, that the selected grip is being
performed (when it is completed, the flag f1 is lifted). Also, S3 represents
that the hand is currently enacting the chosen gesture; while, S4, that the
fingers are opening (process that informs it is finished by lifting the flag f2).

The state S0 indicates that the fingers on the prosthesis are fully extended, in
their default initial state, while in S3, the hand is currently performing the chosen grip.
An important aspect to note is that, while in this state, changing the menu’s selection is
presented to the user, as the motor activation processes’ timing differs between actions
and could lead to wrong finger positioning if the case arose. The states S2 and S4 indicate
that the prosthetic device is currently closing or opening its fingers, respectively. These
procedures can be interrupted by each other if a correct command is received. In addition
to that, to execute an action q0 needs to be performed by the user. At the same time, q1

also deactivates performed actions. This simplified subset provides a viable alternative if
some of the Myo poses are unperformable by the patient.

Finally, the last elements in the FSM representing the interface’s behavior are
the flags f1 and f2. The first one is triggered when all the fingers have reached their desired
position when performing an action, while the second triggers when all the fingers returned
to their initial position, θ0.
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Figure 2.9 – Galileo Hand’s graphical menu (left) and the prosthesis performing the action
“Close" (right).
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3 Problem Statement

This chapter delves into the application of robust filtering to assistive robotics.
The first approach proposes advanced robust estimation techniques and output-feedback
control strategies based on LMIs applied to sensorless transradial upper-limb prostheses.
In contrast, the second approach delves into two alternatives to the probabilistic method
for landmark-based mobile robot localization, also based on LMIs.

In a sensorless system such as the Galileo Hand, measuring all the system’s states
is often difficult or impractical, negatively impacting the performance of the prosthetic
device. H∞ filter estimators provide a solution to this problem by using a mathematical
model of the system to estimate its states based on available sensor measurements.

The main advantage of H∞ filter estimators is their robustness to disturbances
and uncertainties. This advantage is relevant due to the significant input signal variations
related to environmental changes, system degradation, or due to the user’s movements.
These filter estimators are designed to minimize the impact of these disturbances and
uncertainties, resulting in more accurate state estimates. In addition to their robustness,
H∞ filter estimators also offer excellent performance in terms of convergence and tracking.
This feature means that these estimators can quickly and accurately estimate the system’s
state and adjust to changes in the input signals in real-time applications.

On the other hand, H∞ filter estimators also have proven to be a powerful
tool for landmark-based mobile robot localization. Mobile robots operating in real-world
environments are also subject to various sources of uncertainty, including sensor noise,
environmental variability, and odometry errors. Therefore, in addition to the advantages
mentioned above, H∞ filter estimators offer a flexible and modular approach to the mobile
robot localization problem. They can be easily combined with other state estimation and
control techniques to create a complete localization and control system for the robot. This
flexibility allows the robot to adapt to different environments and tasks and may lead to
improved overall performance.

Therefore, the methods proposed throughout this work take advantage of
LMI-based H∞ filter estimation methods, which have several advantages over stochastic
approaches. In addition to presenting robustness against uncertainties, they can handle
nonlinearity and time-varying systems through linear parameter-varying (LPV) systems,
guaranteeing the stability and performance.
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3.1 Robust Control Strategy for Sensorless UTD Prosthetic Hands
To control the fingertip force exerted by the fingers and the angular position of

the gear shaft that drives the fingers of the prosthetic device, it is necessary to determine
both parameters at each moment. This way, a control system can regulate them to the
desired value and operate the actuators on the prosthesis accordingly. However, from
Eqs. (2.29)-(2.30), it is evident that the finger’s dynamic behavior of the coupled system
is not described by a Linear Time-invariant (LTI) system, mainly due to the nature
of its terms. Thus, it is difficult to estimate in real-time the full state of the coupled
system of differential equations using an embedded system based on an ARM Cortex-M4
microcontroller unit (MCU), as shown in Fig. 2.3.

In this manner, the system’s behavior was approximated by a linear model,
which considers the dynamic equations of motion of the finger as a mass-spring system.
This approximation was employed since it presents a mechanical behavior similar to that
of a UTD machine, where the passive tendon opposes the flexion movement but favors the
extension one. Therefore, it simplifies the computational load since it is unnecessary to
linearize the model, allowing the implementation of this control strategy on the MCU used
on the prosthetic device. This mechanism does not have a mechanical limit to stop the
extension movement, unlike the flexion movement, which is limited when the finger comes
into contact with an object or when it is completely closed. This causes the motor to rotate
and flex the digit again (as the pulley uncoils completely and then coils the string in the
opposite direction), making it difficult to control the extension movement without using a
position sensor on the motor shaft. This issue could not be solved simply by measuring the
time the finger requires to close and then calculating the extension time. These amounts
of time are not equal, as the passive tendon opposes itself to the coiling mechanism but
favors its counterpart, even worst when possible disturbance while actuating may provide
an offset in that angular position.

On the other hand, if the fingertip position is known and related to the
gearhead’s angular position, θ, one can close the fingers without any of the problems
mentioned previously. Hence, the purpose of implementing a robust observer is to determine
the angular displacement and velocity of the gearhead’s shaft only, leading to not requiring
an exact result for the generalized coordinates q. However, the estimated state is useful
to get an approximation of this parameter as well as the joints’ torque, τ by employing
Eqs. (2.24) and (2.29).

In addition, by considering ia as the armature current demanded by the DC
motor, Gr as the gear ratio, kt as the motor’s torque constant, and η as the gearhead’s
efficiency, τm can be obtained with the following expression:

τm = ηGrktia (3.1)
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Thus, the continuous-time state-space model for brushed DC motors results in:

ẋ =


0 1 0
ksr2

p

Jm
− b
Jm

kt

Jm

0 − ke

La
−Ra

La

x +


0

0
1
La

u (3.2)

y = [ 0 0 1 ] x (3.3)

where x =
[
θ θ̇ ia

]T
, with θ and θ̇ being the gearhead’s angular position and velocity,

respectively; Ra is the armature’s resistance, La is the motor’s inductance, ke is the
electromotive force constant, ks is the elastic constant of the passive tendon, u is the
applied voltage, and y is the measured output. This way, the purpose of this simplified
model is to develop an H∞ observer-based filter in tandem with a full-order filter H∞
to estimate the states of the motor of the UTD system that drives the fingers of the
Galileo Hand (FAJARDO et al., 2017; FAJARDO et al., 2020). Thus, several methods are
proposed in the following chapter.

3.2 H∞ Estimation for Landmark-based Mobile Robot Localization
Localization of mobile robots in a two-dimensional space requires a mathemat-

ical model to describe the robot’s position as a rigid body on wheels moving across a
horizontal plane. Hence, the discrete kinematic model of the differential drive for mobile
robots is considered as follows (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011).

xk+1 =


xk + ∆Tvk cos (θk + ∆Tωk/2)
yk + ∆Tvk sin (θk + ∆Tωk/2)

θk + ∆Tωk

 (3.4)

where xk ∈ Rn is the robot state vector at time k. Thus, xk = [xk, yk, θk]T, where xk
and yk are the Cartesian coordinates of the main axis midpoint between the two driving
wheels and θk is the orientation of the robot with respect to the inertial frame, while
∆T is the sampling period of the process. Besides, the input control vector uk ∈ Rp is
defined as uk = [vk, ωk]T where vk and ωk are the linear and angular velocities of the
robot, respectively.
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In this way, the kinematic model described in Eq. (3.4) can be rewritten in the
following form

xk+1 =


1 0 0
0 1 0
0 0 1

xk +


∆Tvk cos (θk + ∆Tωk/2)
∆Tvk sin (θk + ∆Tωk/2)

∆Tωk



xk+1 = Axk + f̃(xk,uk) (3.5)

where A ∈ Rn×n is the process matrix and f̃(xk,uk) represents the nonlinear effect of
the control input that also depends on the orientation of the robot θk, as is shown in
Equation (3.5). So, for the sake of simplicity in the notation, the nonlinear term will be
denoted by the matrix B1,k. Also, it is essential to emphasize that this term does not affect
the dynamic of the filters proposed in Sections 4.1 and 4.2.

Furthermore, a mathematical model of the sensor that acquires information
about the environment is also required. Thus, for this particular case, the 2-D laser-based
measurement model was adopted as follows.

yk = g(xk) =


√

(xm − xk)2 + (ym − yk)2

arctan
(
ym − yk
xm − xk

)
− θk

 (3.6)

where yk ∈ Rq is the measured output vector, xm ∈ R and ym ∈ R are the Cartesian
coordinates of one landmark (for N landmarks, the length of the output vector has to be
equal to 2N). Furthermore, yk = [ ρk φk ]T, where ρk ∈ R and φk ∈ R are the euclidean
distance and the angle from the robot position to a landmark. Besides, well-known methods
for feature extraction (corners) and landmark correspondence are assumed (PENG; WANG;
CHEN, 2017). However, occupied cells from an occupancy grid map can be considered
as individual landmarks, and the correspondence with each laser measurement can be
performed using a bi-linear interpolation (KOHLBRECHER et al., 2011).

Since the measurement model g(xk) is nonlinear and time-variant, this expres-
sion can be expanded in a Taylor series about the operating point x̂k ∈ Rn as follows

Ck = |


−(xm − xk)

ρk
−(ym − yk)

ρk
0

(ym − yk)
ρ2
k

−(xm − xk)
ρ2
k

−1


∣∣∣∣∣∣∣∣∣
xk=x̂k

(3.7)

Thus, to solve the localization problem under the LMI-based methods presented
in the following chapter, it is necessary to linearize the measurement model g(xk) at each
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time step k. This linearization implies solving a convex optimization problem in each
algorithm iteration, precisely a semi-definite programming problem via interior point
methods (NEMIROVSKII; GAHINET, 1994).
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4 LMI-based H∞ Robust Filtering

Linear Matrix Inequality (LMI) based filtering and estimation techniques
are state-space methods that utilize matrix inequalities to synthesize optimal filters and
estimators for linear systems subject to constraints. These techniques have gained significant
attention in the last few decades due to their ability to handle various constraints on the
system, such as input/output disturbances, noise, and uncertainties. LMI-based filters
and estimators ensure robustness, stability, and performance by minimizing the effect
of disturbances while optimizing the system’s output. These techniques have numerous
applications in areas such as control engineering, signal processing, and robotics.

This chapter delves into two different approaches to addressing guaranteed-
cost H∞ full-state estimation. The first is based on the well-known two-step prediction-
correction approach, while the second presents a full-order robust filter that guarantees
better robustness and performance than the two-step method.

4.1 Discrete-time H∞ Full-State Estimator
For designing the observer, a discretization of the aforementioned system is

required. Considering the noise components and a sampling time k, it results in the
following:

xk+1 = Axk + B1uk + B2wk (4.1)

yk = Cxk + D1vk + D2wk (4.2)

Taking into consideration that for the second case of application, the lineariza-
tion of the measurement model, g(xk), is needed, the output equation can be described as
follows:

yk = Ckxk + D1vk + D2wk (4.3)

where xk ∈ Rn, uk ∈ Rp, yk ∈ Rq, wk ∈ Rs and vk ∈ Rt are the states, control input,
measured output, process, and measurement noise vectors, respectively. Besides, A ∈ Rn×n,
B1 ∈ Rn×p, B2 ∈ Rn×s, C ∈ Rq×n, D1 ∈ Rq×t and D2 ∈ Rq×s are the process, input
control, and input process noise, measured output, as well as the output process and
output sensor noise matrices, correspondingly. For the sake of simplicity, C and Ck will
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be treated interchangeably. Then, by defining a general noise vector, w̃k = [wk vk]T , an
observer-based filter can be described by

x̂k+1 = Ax̂k + B1uk − L(yk − ŷk) (4.4)

where x̂k ∈ Rn is the estimated state; ŷk ∈ Rn the estimated output; and L, the observer
gain.

Since the initial conditions of the estimated state, x̂0, are equal to those of
the initial state, x0 = [0 0 0]T , one can determine the filtering error dynamic, from the
expressions (4.1)-(4.4), with the following augmented system.

ek+1 = Aoek + Bow̃k (4.5)

ỹk = Coek + Dow̃k (4.6)

with

Ao = A + LC Bo = [B2 + LD2 LD1] (4.7)

Co = C Do = [D2 D1]

The main goal is to find an optimal robust observer-based filter for the system
composed by (4.1) and (4.2), where the error filtering, ek, has to satisfy that ‖ek‖2 ≤
γ(‖wk‖2 + ‖vk‖2), with the robustness level γ ∈ R such that γ > 0. Therefore, from the
bounded-real lemma and given the transfer function H(z) in the complex frequency-domain
for the system (4.1-4.3), the norm H∞ can be characterized using the quadratic Lyapunov
function, ν(xk) = xTkPxk, as done in (BOYD et al., 1994), imposing that

‖H(z)‖∞ < γ ⇔ ∃P ∈ Rn×n 3 P = PT > 0 (4.8)

where the following expression results by substituting the equations described in (4.7) into
Eq. (2.23), defining µ = γ2 and by applying the Schur complement:



P AT
o P 0 CT

o

? P PBo 0

? ? Ir DT
o

? ? ? µIq


> 0
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This way, by substituting again the equations described in (4.7), the following
expression is obtained.



P ATP + CTLTP 0n×s 0n×s CT

? P PB2 + PLD2 PLD1 0n×q

? ? Is 0s×s DT
2

? ? ? Is DT
1

? ? ? ? µIq


> 0

Hence, by changing the variable to substitute the nonlinear term PL by Z, an
observer meeting the aforementioned requirements may be successfully established if a
solution to the following convex optimization problem can be found.

min
Z,P=PT>0

µ (4.9)

which is subject to the following LMI



P ATP + CTZT 0n×s 0n×s CT

? P PB2 + ZD2 ZD1 0n×q

? ? Is 0s×s DT
2

? ? ? Is DT
1

? ? ? ? µIq


> 0 (4.10)

where the matrices Z ∈ Rn×q and P are the variables of the problem (OLIVEIRA;
GEROMEL; BERNUSSOU, 2002). In addition to that, L ∈ Rn×q can be recovered using
the following expression:

L = P−1Z (4.11)

On the other hand, to further improve this system’s robustness, a slack variable,
G ∈ Rn×n, can be incorporated so that the optimization problem is given by.

min
Z,G,P=PT>0

µ (4.12)
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subject to the following LMI



P ATG + CTZT 0n×s 0n×s CT

? G + GT −P GTB2 + ZD2 ZD1 0n×q

? ? Is 0s×s DT
2

? ? ? Is DT
1

? ? ? ? µIq


> 0 (4.13)

Moreover, since G + GT > P > 0, this implies that G is non-singular (OLIVEIRA;
GEROMEL; BERNUSSOU, 2002), resulting in L that can to be recovered by evaluating
the equation mentioned underneath:

L = (GT )−1Z (4.14)
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4.2 Discrete-time H∞ Filter
To design a full-order filter (i.e., a nf = n) that guarantees an improved

performance level γ, which upper bounds the maximum magnitude of the transfer function
from the noise inputs to the estimation error, it was considered an LTI discrete-time
system with noise components at sampling time k in the following form

xk+1 = Axk + B1uk + B2wk (4.15)

zk = C1xk + D11wk (4.16)

yk = C2xk + D21vk + D22wk (4.17)

Taking into consideration that for the second case of application, the lineariza-
tion of the process and measurement models is needed, the output equations can be
described as follows:

xk+1 = Axk + B1,kuk + B2wk (4.18)

zk = C1xk + D11wk (4.19)

yk = C2,kxk + D21vk + D22wk (4.20)

where xk ∈ Rn, uk ∈ Rm, and wk ∈ Rr, are the state, control input and process noise
vectors, whereas yk ∈ Rq, zk ∈ Rp, and vk ∈ Rs are the measured output, the output
reference, and measurement noise vectors, correspondingly (as shown in Fig. 4.1).

Furthermore, A ∈ Rn×n, B1 ∈ Rn×t, and B2 ∈ Rn×r correspond to the process,
input control and input process noise matrices; C1 ∈ Rp×n and C2 ∈ Rq×n are the output

Figure 4.1 – Discrete-time system with a full order filter scheme.



CHAPTER 4. LMI-BASED H∞ ROBUST FILTERING 70

reference and measured output matrices, D11 ∈ Rp×r and D22 ∈ Rq×r correspond to the
process noise matrices related to the output reference and measured output; as well as
D21 ∈ Rq×r is the sensor noise matrix. For the sake of simplicity, C1 and C1,k, as well as
C2 and C2,k will be treated interchangeably.

Thus, by defining a general noise vector, w̃k = [wk vk]T and based on what
are presented in works (FAJARDO et al., 2020; FAJARDO et al., 2021), the dynamic of
the optimal guaranteed robust H∞ filter can be described by

x̂k+1 = Af x̂k + Bfyk (4.21)

ẑk = Cf x̂k + Dfyk (4.22)

where x̂k ∈ Rnf is the estimated state, ẑk ∈ Rp is the estimated output, as shown in
Fig. 4.1. Hence, the matrices Af ∈ Rn×n, Bf ∈ Rn×q, Cf ∈ Rp×n and Df ∈ Rp×q are
to be determined (GEROMEL et al., 2000). In this way, from expressions (4.15)-(4.22),
considering ek = zk − ẑk, and control input does not affect the dynamic of the proposed
filter, an augmented state dynamic is given by

x̃k+1 = Aax̃k + Baw̃k (4.23)

ek = Cax̃k + Daw̃k (4.24)

with

Aa =
 A 0

BfC2 Af

 Ba =
 B2 0

BfD22 DfD21


Ca =

[
C1 −DfC2 −Cf

]
Da =

[
D11 −DfD22 DfD21

]
Therefore, based on what are presented in works (FAJARDO et al., 2021;

FAJARDO et al., 2021), a full-order filter that meets robust requirements, where the
estimation error, ek, has to satisfy that ||ek||2 ≤ γ(||wk||2 + ||vk||2), with the robustness
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level γ ∈ R s.t. γ > 0, can be successfully characterized if and only if there exists a
symmetric matrix P = PT > 0 such that



P PAa PBa 0

? P 0 CT
a

? ? Ir DT
a

? ? ? γ2Iq


> 0 (4.25)

In this way, following the same methodology applied in (GEROMEL et al.,
2000), where the matrices P ∈ R2n×2n and its inverse, P−1, are partitioned into n × n
blocks to convert the nonlinear matrix inequality into an LMI as follows

P =

 X In

In X̃

 P−1 =

 Y VT

V Ỹ

 (4.26)

Thus, by developing the expression, PP−1 = I2n, the following expressions are derived:

XY + V = In

XVT + Ỹ = 0

Y + X̃V = 0

VT + X̃Ỹ = In

where X,Y, X̃, Ỹ ∈ Rn×n are positive definite symmetric matrices. This way, defining the
following nonsingular matrices:

S =
 Y In

V 0

 R =
 Y 0

0 In


with the following inverse matrices:

S−1 =
 0 V−1

In −YV−1

 R−1 =
 Y−1 0

0 In
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The following similarity transformation for the Eq. (4.25) is performed



R−1ST 0 0 0

0 R−1ST 0 0

0 0 Ip 0

0 0 0 Ir





P PAa PBa 0

? P 0 CT
a

? ? Ir DT
a

? ? ? γ2Iq





SR−1 0 0 0

0 SR−1 0 0

0 0 Ip 0

0 0 0 Ir


> 0

(4.27)

Then, by substituting the matrix, P, defined in Eq. (4.26) on the resulting
expression from Eq. (4.27), one has that the robust full-order filter can be characterized if
and only if there exist positive definite symmetric matrices X,Y ∈ Rn×n, X̃, Ỹ ∈ Rn×n,
with Z = Y−1; the matrix V ∈ Rn×n as well as the following matrices F ∈ Rp×n, G ∈ Rn×n,
Bf and Df , that minimize the robustness level γ = √µ subject to the following LMI



Z Z ZA ZA

? X XA + Bf C2 + G XA + Bf C2

? ? Z Z

? ? ? X

? ? ? ?

? ? ? ?

? ? ? ?

]

[

ZB2 0n×r 0n×p

XB2 + Bf D22 Df D21 0n×p

0n×r 0n×r CT
1 −CT

2 Df
T − FT

0n×r 0n×r CT
1 −CT

2 Df
T

Ir 0r×r DT
11 −DT

22Df
T

? Ir DT
21Df

T

? ? µIp



> 0 (4.28)
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In addition, the remaining matrices that describe the dynamics of the filter are
given by

Af = G(VZ)−1 Cf = F(VZ)−1 (4.29)

with V = In −XZ−1, defined to simplify the notation. Finally, it is essential to note that
matrices Z, X, F, G, as well as the matrices Bf and Df which also describe the dynamics
of the filter are variables of the problem. The main difference with the methods presented
in Section 4.1 is that unlike finding an observation gain we are finding a full order dynamic
filter given by the matrices Af , Bf , Cf and Bf .
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5 Control Strategy

This chapter delves into developing a robust control strategy for an affordable,
anthropomorphic upper-limb prosthesis based on a UTD system to drive its 3 DoF fingers.
Hence, high-level (user intend interpretation) and low-level (to drive each finger) controllers
have been considered to understand this work better.

Once the UTD system’s full state is known, one can input the estimated state
to a controller to regulate or limit the values of specific parameters, like the fingertip force
and joint torques. To do that, one can solve the forward and velocity kinematics of the
finger (3-link planar arm) to know their values for every instant in time by employing the
Eqs. (2.24), (2.29), as well as the following expression.

f tip = (J(q)T )+τ (5.1)

where f tip is the force exerted by the fingertip, J(q) is the space Jacobian matrix in 2D
that relates the twist of the fingertip Vtip with the generalized velocities q̇, as follows

Vtip = J(q)q̇ (5.2)

At a high level, different techniques can be used to interpret the user’s intent
gathered by a UPI, where the vast majority are based on electromyography (EMG) as an
acquisition method. Based on what the UPI has interpreted, the system decides which
fingers must be flexed and which not to achieve a desired grip or gesture. Therefore,
considering that the fingers on the artificial hand behave similarly to a non-back drivable
system, the on-off controller was designed to achieve the flexion movements with the
necessary force f tip to hold different objects. In contrast, the robust full-state observer
estimates the angular displacement θ of the gearhead shaft for each motor (no quadrature
encoders are employed) (FAJARDO et al., 2020). This estimation is used to have the
necessary feedback to perform the extension movement using a robust feedback controller
that drives the finger back to its initial position θ0.

At a low level, each finger functions with an individual hybrid control strategy
(on-off controller for the flexion process, robust feedback controller for the extension
process), except for the thumb, which possesses, additionally, a quadrature encoder to
implement a PI position controller for its rotation.
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5.1 On-off Controller
Since the armature current ia of each DC motor is the only feedback signal

measured from the system, a simple force on-off controller is implemented to perform
the flexion process. In this manner, by constantly monitoring the armature current ia
from each DC motor and, used together with the robust observer-based filter described
in chapter 4.2, one can easily be related with the fingertip force f tip using expressions
(2.24), (2.29), (2.30), (3.1) and (5.1). Thus, the prosthesis can perform different predefined
grips, ensuring that these are stable, assuming at least three points of contact since the
system limits the force exerted by each finger, as illustrated in the FSM in Fig. 5.1.

The system starts with the finger fully extended in a rest position ("open", at
θ = θ0), modeled by the state S0. The transition to S1 happens when the HLC sends
the command to flex the finger, c. This drives the motor and causes the finger to start
closing. While in this state, the estimated fingertip force f tip is continuously determined
and, when a predefined threshold, th, is exceeded, the transition to S2 happens. This
parameter may differ for each finger, as each one has a different size and, consequently,
discrepant mechanical factors, so the calibration process was carried out experimentally.
At this point, the finger is considered completely closed or could be one or more of its
phalanges touching the surface of an object. Then, it will begin to open if and only if the o
command is issued by the HLC, as shown by the transition from S2 to S3. The alteration
in state from S3 to S0 happens after the angular displacement, θ is approximated to its
initial value θ0 = 0 (driven by the feedback controller described in Sec. 5-B). This strategy
was adopted since the passive tendon (installed on each finger opposes itself to the coiling
process but favors the unfurling one; therefore, it is essential to ensure that the motor’s
shaft rotates the same angular displacement in both processes. Finally, the closing/opening
processes may be interrupted and reversed if the appropriate commands are received.

Figure 5.1 – FSM demonstrating the opening/closing behaviour of each finger.
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5.2 Discrete-time H∞ Feedback Controller
A discretization of the simplified system is also required to design the feedback

controller in charge of opening the fingers. Considering that the estimated state vector x̂k
is available for feedback, that xk ≈ x̂k; and that the state information is not corrupted by
the input noise wk, the characterization of the system is given by the Eq. (4.15) and the
following measurement equation

yk = Cxk + Duk (5.3)

where D ∈ Rq×p is the feedthrough matrix. Hence, by choosing the following linear static
state-feedback control law

uk = Kxk (5.4)

where K ∈ Rp×n is the feedback gain that asymptotically stabilizes the closed-loop system
and minimizes its H∞ norm. Such a structure produces the following closed-loop dynamics

xk+1 = Acxk + B2wk (5.5)

yk = Ccxk (5.6)

with

Ac = A + B1K, Bc = B2

Cc = C + DK

The goal is to find a guaranteed-cost feedback gain for the system composed
by (4.15) and (5.3), which has to satisfy that ||yk||2 ≤ µ||wk||2, with the robustness level
µ ∈ R such that µ > 0. Therefore, also from the bounded-real lemma and given the
transfer function Hwy(z) for the system (5.5)-(5.6), the norm H∞ can be characterized
using a Lyapunov function, as follows

min
W,P=PT>0

µ (5.7)

subject to the following LMI



P AP + B1W 0n×q B2

? P PCT + WTDT 0n×s

? ? Iq 0q×s

? ? ? µ2Is


> 0 (5.8)
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where the matrices W ∈ Rp×n and P are the variables of the problem (OLIVEIRA;
GEROMEL; BERNUSSOU, 2002). Hence, K can be recovered using the following expres-
sion

K = WP−1 (5.9)

On the other hand, to further improve this system’s robustness, a slack variable,
G ∈ Rn×n, can be incorporated so that the optimization problem is now

min
W,G,P=PT>0

µ (5.10)

which is subject to



P AG + B1W 0n×q B2

? G + GT −P GTCT + WTDT 0n×s

? ? Iq 0q×s

? ? ? µ2Is


> 0 (5.11)

Therefore, K can be recovered by

K = WG−1 (5.12)
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6 Results

This chapter presents the results and key findings obtained from this study.
These results are based on applying LMI-based filters and estimators to assistive robotics
systems subject to various constraints. The chapter highlights the performance of the
proposed LMI-based filters in terms of robustness, stability, and output quality. Further-
more, it comprehensively analyzes the estimation error and its upper bound for different
filter structures showing the effectiveness of LMI-based filters and estimators in practical
applications through two specific case studies.

6.1 Robust Control Strategy for Sensorless UTD Prosthetic Hands
The experiments to test and validate the methods proposed throughout this

work were carried out using the fingers of the Galileo Hand (as shown in Fig. 6.1), controlled
by a customized PCB board located on the inside of the palm of the prosthetic device, with
its volar side in a supine position (FAJARDO et al., 2017; FAJARDO et al., 2020). These
experiments simulated 20 force grips using one test bench for each finger. In this way, for
the index, middle and pinky fingers, 10 flexion and extension processes were performed
holding a small plastic ball of approximately 6.5 cm in diameter, and 10 processes with
each finger completely closed without holding any object. For this, the armature current
and the angular position of the motor axis of the fingers above were recorded to estimate
the dynamics of each UTD system. In addition, these results were validated by executing
different gestures and grasping in the Galileo Hand using different objects of daily living,
as shown in the videos presented in the following links: Gestures and Graspings.

Figure 6.1 – (a) A limb-impaired volunteer tests the Galileo Hand holding a water bottle.
(b) The test bed used to standardize the experiment iterations of each finger
interacting with a small plastic ball.

https://youtu.be/Sc4-QxlSR2M
https://youtu.be/8HUI4sh1zcI
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Figure 6.2 – (a) Gearhead shaft’s angular displacement, θ. The dotted red line represents
the estimation θ̂; solid blue line, the ground truth. (b) The motor’s armature
current, ia.

However, only the mass matrix effects were considered (no gravity term since
most grips for the test were in a neutral position, and no Coriolis and centripetal terms
since the generalized speeds are low). MATLAB and YALMIP were utilized to design
and characterize the robust H∞ observer-based filter, the H∞ full-order filter, and the
robust H∞ feedback controller described in Chapters 4 and 5.2, respectively, as well as
MOSEK to solve into a PC (Intel Core i7 Processor ) the convex optimization problems
subjected to the LMIs (APS, 2019; LOFBERG, 2004). The resulting dynamics of both
control strategies were implemented in the MCU (ARM Cortex-M4) in charge of actuating
the assistive device’s fingers. Fig. 6.2 presents the behavior of the on-off controller in
tandem with the full-order filter in (4.2) during the flexion process of the finger and on
the extension process without employing any control strategy. The upper graph shows the
estimation of the angular displacement of the motor shaft, θ̂, juxtaposed to its ground
truth alternative, θ. The lower one represents the armature current of the brushed DC
motor measured by the motor driver. This estimation was established based on the data
gathered by measurements acquired using the on-chip ADC for the current and the on-chip
timer for the quadrature encoder attached to the motor’s shaft, with a sample rate of 2 kHz.
In this manner, the gearhead’s shaft’s angular displacement when the finger is wholly
flexed for the one iteration of the process for the index finger results in about 4.5971 rad,
the estimated value using the method proposed in (4.1), is about 4.6775 rad while the
estimated value using the method proposed in (4.2) is about 4.6253 rad. Similar results
were obtained for the extension process where the error is approximately 7.2× 10−3 mm

resulting in a root mean square error (RMSE) for θ of about 0.1394 rad for the method
proposed in (4.1). Fig. 6.3(c) and (d) show similar discrepancies in the extension process,
where the error is approximately 5.3× 10−3 mm resulting in a RMSE for θ of about 0.0986
rad for the method proposed in (4.2).
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These measurements imply that the active tendon was coiled around 16.5 mm
instead of the 16.7−16.8 mm estimation obtained with the two presented methods. A similar
difference occurs in the extension process, where that error is minimal, approximately
7.2× 10−3 mm for the method proposed in (4.1), and 2.5× 10−3 mm for the one presented
in (4.2). This results in a root mean square error for θ of about 0.1394 rad and about
0.1382 rad for both methods. Finally, the robustness level γ, is about 2.2915 × 10−6

and 1.1932 × 10−6, respectively. These results show similar but better results for the
method presented in (4.2) rather than the ones presented in (4.1) (FAJARDO et al., 2020;
FAJARDO et al., 2021).

Furthermore, the experiment iterations for the flexion and extension process
were performed only for the following fingers: index, middle, ring, and little fingers. The
MCP, PIP, and DIP joints’ radius and the mass and lengths for each phalange are shown
in Table 6.1. In addition, armature’s resistance, Ra, about 35.95 Ω, motor’s inductance, La,
about 1.3595 mH, electromotive force constant, ke, about 2.692 mV/rad/s, elastic constant
of the passive tendon, ks, about 0.0072 N/m, moment of inertia of the rotor, Jm, about
3.458× 10−12 kgm2, motor viscous friction constant, b, of 0 Nms, a gear ratio, Gr, of 250,
motor’s torque constant, kt, about 3.539 × 10−3 Nm/A and gearhead’s efficiency, η, of
100%, were considered for the experiment. These values were characterized and collected
experimentally under laboratory conditions using the same six micro metal gear motors
used in the Galileo Hand.
Table 6.1 – Mass and length of the proximal, middle, and distal phalanges, as well as the

radius of the MCP, PIP, and DIP joints for each finger.

Finger m1 (g) m2 (g) m3 (g) l1 (mm) l2 (mm) l3 (mm) r1 (mm) r1 (mm) r3 (mm)

Index 4.67 2.68 1.78 45 23 21 3 3.7 3.56
Middle 4.76 2.94 1.78 47 26 21 3 3.7 3.56
Ring 4.67 2.68 1.78 45 23 21 3 3.7 3.56
Pinky 4.05 2.59 1.70 38 22 20 3 3.7 3.56

The results for all the experiment iterations are presented in Table 6.2, where
θ corresponds to the mean and standard deviation (SD) of the ground truth gathered by
the quadrature encoder attached to the finger under evaluation. The mean and SD were
determined since generating identical trajectories for each flexion process is physically
impossible. In addition, e1 is the mean and SD of the estimation error for the estimation
method proposed in Sec. 4.1. At the same time, e2 is the mean and SD of the estimation
error for the method proposed in Sec. 4.2. Similar results were achieved since the angular
range of motion for the MCP joint in completely closing each finger is the same for
each finger; however, the lengths and masses of each phalanx only influence the fingers’
kinematics and dynamics.
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Table 6.2 – Ground truth and estimation error for all iterations on each finger under
estimation methods proposed.

Finger θ (Mean ± SD) e1 (Mean ± SD) e2 (Mean ± SD)

Index 4.5925± 0.0205 rad 0.0750± 0.0056 rad 0.0490± 0.0031 rad
Middle 4.6083± 0.0177 rad 0.0755± 0.0063 rad 0.0502± 0.0022 rad
Ring 4.6008± 0.0186 rad 0.0740± 0.0051 rad 0.0494± 0.0036 rad
Pinky 4.5869± 0.0218 rad 0.0764± 0.0052 rad 0.0504± 0.0035 rad

The behavior of the robust output-feedback controller described in Sec. 5-B
is shown in Fig. 6.3(a) and (b). As can be seen, it takes the controller about 2 seconds
to complete the extension process that drives back the finger, while using full power, it
only takes about 0.575 seconds, as shown in Fig. 6.3(c). In addition, the gearhead’s shaft’s
angular displacement when the finger grabs the small plastic ball for the 10 processes for
the index finger results in about 1.363 rad, the estimated value using the method proposed
in (4.1), is about 1.352± 0.141 rad while the estimated value using the method proposed
in (4.2) is about 1.359± 0.105 rad. Similar results were found by experimenting with the
middle and pinky fingers. No experiments were performed with the ring finger since it has
the same characteristics as the index finger.

Figure 6.3 – The response of the robust controller during the extension process, (a) Gear-
head shaft’s angular displacement, θ, and (b) velocity, respectively. Perfor-
mance of the estimator during a full power extension process, (c) Solid blue
line is the gearhead shaft’s angular displacement, θ. The dotted red line
represents the θ̂ estimation, and (d), the current, ia, measured on the motor’s
armature.
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Figure 6.4 – Torque τ applied on the MCP, PIP and DIP joints’ axes (τ1, τ2 and τ3,
correspondingly).

The estimation for the angular displacement of the gearhead’s shaft, θ̂, was
used to project the values of the generalized coordinates q̂ and then determine the resulting
torque on each of the joints’ axes, the force exerted by the fingertip f tip, as well as an
estimated trajectory of the finger. This can be visualized in Figs. 6.4, 6.5 and 6.6, where the
torques exerted on the MCP, PIP, and DIP joints correspond to τ1, τ2 and τ3, accordingly;
as well as the magnitude of fingertip force with its components on x and y directions and
the fingertip’s trajectory on X − Y plane on the solid blue line. Thus, the estimation error
for generalized coordinates, q, results in eq = [0.014, 0.068, 0.012]T .

These results were validated by instrumenting the fingertip with a force-sensitive
resistor (FSR), showing that the resultant fingertip force was limited to around 0.25 N.
In contrast, the model shows a limit of around 0.4 N, as shown in Fig. 6.5. This way,
incrementing the fingertip force limit to 0.6 N and 0.8 N, an offset of about 0.15 N is
maintained. In addition, the FSR was characterized experimentally in the laboratory using
a ten well-known weights from 10 to 100 g. The data was gathered using the on-chip ADC
of the main MCU of the Galileo Hand in tandem with a Wheatstone bridge in tandem
with the instrumentation amplifier INA122 from Texas Instruments.
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Figure 6.5 – Fingertip force f tip exerted by the finger in x (red) and y (green) directions,
as well as the magnitude of the resultant force (blue).

Besides, the methods proposed in Sections (4.1) and (5.2) provide (after 23
and 27 iterations, respectively) observation and output-feedback gains given by (truncated
with 4 decimal digits) with γ = 0.0353 and µ = 0.1005, accordingly.

L =


−0.5250
−14.5567
−0.2948

, K =
[
−0.1234 0.0001 −1.5493

]

tested for the state-space representation of the simplified continuous-time system of the
UTD machine described by (truncated with 4 decimal digits)

A =

 0.0000 1.0000 0.0000
3.7480× 10−3 −0.4360 1.0230× 109

0.0000 −1.9800 −2.6440× 104

, B =

 0.0000
0.0000
735.6

,

C =
[

0.0000 0.0000 1.0000
]
, D = 0.0000
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Figure 6.6 – (a) Estimated trajectory of the index finger. The solid blue line represents
the trajectory of the fingertip, green and red dotted lines are the DIP
and PIP joints. (b) Simulated trajectory with final generalized coordinates
q̂ = [0.946, 1.040, 0.903]T rad. (c) The ground truth for the estimated flex-
ion process with final generalized coordinates q = [0.9323, 0.973, 0.891]T
rad. Either simulation and ground truth flexion movement starts in q0 =
[0.279, 0.209, 0.105]T rad.

Finally, the method proposed in Section (4.2) provides (after 24 iterations) the
full-order filter given by (truncated with 4 decimal digits) with γ = 0.0152, also for the
same simplified continuous-time system of the UTD machine

Af =

 1.0000 0.0000 0.0000
−0.0110 0.0039 −0.0080
−1.4186 −0.0013 0.0011

, Bf =

 0.0000
−0.2664
0.0412



Cf =

 −0.0124 −0.0000 −0.0000
0.0000 −0.0001 0.0000
−0.0000 0.0000 0.0001

, Df =

 0.0000
0.0949× 10−9

0.1579× 10−9
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6.2 H∞ Filters for Landmark-based Mobile Robot Localization
The experiments to test and validate the abovementioned methods were con-

ducted using the Pioneer P3-DX robot from Adept MobileRobots in real and virtual sce-
narios. The real robot is equipped with a Sick LMS100 2D LiDAR, while the virtual model
utilizes the fast Hokuyo 2D LiDAR available in the CoppeliaSim simulator (ROHMER;
SINGH; FREESE, 2013). In addition, although the algorithms were tested in a large
environment using the simulator, a small static environment which is composed of flat
surfaces (i.e., walls) was built as shown in Figs. 6.7 and 6.8, both in a real scenario and
under the virtual robotic simulation framework. This environment was built within an
area of 4.67× 3.18 meters. Thus, nine landmarks (corners) were placed at Cartesian coor-
dinates (xm, ym) in meters, as follows: L = {(0.0, 0.0), (0.0, 2.26), (0.92, 2.26), (0.92, 3.18),
(4.19, 3.18), (4.19, 2.325), (4.67, 2.325), (4.67, 0.665), (4.03, 0.0)}. This environment was
more suitable for validating, evaluating, and comparing both algorithms’ performance
concerning the EKF algorithm.

On the other hand, MATLAB, YALMIP, and MOSEK were also used to

Figure 6.7 – Robot trajectory under a real controlled environment. The green cross is
the robot’s initial position; the blue is the final estimated position. The
green and dotted red lines are the ground truth and the estimated trajectory,
respectively.
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implement and validate the proposed H∞ localization methods (APS, 2019; ANDERSEN;
ANDERSEN, 2000; LOFBERG, 2004). All experiments (virtual and real scenarios) were
run on a PC with an Intel Core i7 processor with 8 GB of RAM; RESTthru was also
employed to establish communication between MATLAB, the Pioneer 3-DX robot, and
the Sick LMS100 2D LiDAR (SOUZA et al., 2013). These robust estimation filters also
solved the convex optimization problems subjected to the LMIs described in Eqs. (4.28),
(4.13) and (5.8) via interior point methods. This way, the parameters of the H∞-based
filters described in Eqs. (4.11), (4.14) and (4.29) are determined after finding a feasible
solution to the optimization problems as mentioned earlier (NEMIROVSKII; GAHINET,
1994).

Furthermore, successful results were obtained with both methodologies; however,
since the results were quite similar, only the results obtained by the filter gain described
by Eq. (4.14) are shown in Fig. 6.7, where the solid green line illustrates the ground-
truth trajectory of the differential wheeled robot, while the red dashed line illustrates its
estimated position in the environment. The green and blue crosses represent the initial
and final positions of the robot, respectively. In contrast, the black dashed line and small
crosses illustrate the static environment and the landmarks’ real positions.

Performance parameters for this scenario, such as the robot pose estimation
errors for each iteration and the approximated robustness level γ, are shown in Fig. 6.9.
These results were obtained using the two proposed methods and the EKF from a data

Figure 6.8 – Pioneer P3DX differential wheeled mobile robots during localization tests
under the real scenario.
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Figure 6.9 – Robot pose estimation error throughout each iteration using the method
proposed in Section 4.1 under a real scenario, and using the method proposed
in Section 4.2 under simulation environment are in sub-figures (a) and (b).
(c)EKF pose estimation error under a real scenario. (d) Robustness level γ
using the method proposed in Section 4.2 under the real environment.

collection of 500 samples at a sampling frequency of about 10 Hz. Each sample comprises
the control input vector uk and a measurement vector with the 241 laser measurements
at time k. As mentioned above, well-known feature extraction (corners) and landmark
correspondence algorithms were employed. Each solution’s complexity depends on the
number of detected landmarks in the environment, reflected in the number of variables to
solve in each iteration. However, both proposed methods provide convergence even if only
two landmarks are observed at any time step. For the first proposed method, the amount
of variables oscillates between 34 and 82 at each iteration, and its behavior is described in
the same way as the Fig. 6.9(b) for the second method, the number of variables remain
constant (40).

In all the tests, the observer-based filter gain matrix and the dynamic filter
matrices were calculated below a time interval of approximately 100 ms. Both methodologies
present small state estimation errors. Fig. 6.9(a) shows the state estimation error from
the observer-based filter, as proposed in Section 4.1 and tested under a real scenario
and Fig. 6.9(b) shows the state estimation error from the full-order filter proposed in
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Section 4.2 under simulated environment. In contrast, Fig. 6.9(c) presents the estimation
error from the EKF, also tested under a real scenario. The RMSE for each of the states
are [1.645 mm, 1.482 mm, 1.874◦]T and [6.339 mm, 4.363 mm, 4.311◦]T, respectively. For
the method proposed in Section 4.2, the RMSE is about [1.213 mm, 1.028 mm, 0.754◦]T,
showing a better result than the previous methods. Finally, as shown in Fig.6.9(d), the
approximated value of γ depends on the number of landmarks detected. This result is
because the length of the measured output matrix Ck depends directly on the number of
variables involved in the convex optimization problem at each iteration. In addition, the
realization of observer gain provided by the method proposed in (4.1) and the full-order
filter matrices provided by the method proposed in (4.2) were not presented since these
change also depending on the linearization method mentioned above.



89

7 Conclusions

This thesis explores two robust filter estimation methods for linear systems
with uncertain and noisy inputs applied to different case studies. This way, this research
aimed to develop the methodologies, validate their functionality and, in one particular
case, compare the performance of the LMI-based H∞ filter estimation methods in contrast
to stochastic approaches commonly used in control theory. In general, this work first
presents a simplified dynamic model of the finger, in conjunction with a design of a hybrid
robust control strategy and robust H∞ estimation filters to estimate the full-stated of
a UTD system and some relevant parameters, such as the angular displacement of the
joints and angular displacement and fingertip force, which are helpful in the prostheses
field. The overall strategy using both estimation methods has proven to be a successful
alternative to other alternatives, such as installing complex arrays of sensors to control
affordable prostheses for trans-radial amputees. Additionally, comparing the two robust
filtering proposed methodologies, the whole strategy presents excellent results due to the
advantages of that guaranteed-cost filters, which guarantee a better throughput under the
H∞ robust requirements (FAJARDO et al., 2020; FAJARDO et al., 2021).

The methodologies employed for this hybrid strategy are based on LMI ma-
chinery, allowing the design of more robust controls. This way, systems can better handle
possible perturbations and disturbances since they do not assume typical noise charac-
teristics. Their main drawback is the high computational power required to solve these
optimization problems. However, approximating the finger dynamics to a linear system
allows for solving the optimization problems on a PC capable of running MATLAB and
then utilizing those results for its implementation in an MCU, allowing for a compact and
affordable option to install in prosthetic devices. So, based on the extensive experimenta-
tion and analysis performed, it can be concluded that the LMI-based H∞ filter estimation
methods offer several advantages over the other methods.

Firstly, the LMI-based approach provides a robust and computationally efficient
solution to the filter estimation problem for sensorless and affordable prosthetic hands.
This conclusion is valid once a proper linearization or simplification of the system is
performed. Besides, it can handle various system uncertainties and measurement noises,
making these methodologies well-suited for real-world applications where uncertainties
and measurement noises are inevitable. Secondly, the LMI-based H∞ filter estimation
methods also perform superior estimation accuracy compared to the Kalman filter and
other stochastic approaches. This remark is because the LMI-based approach considers a
broader range of uncertainties and incorporates them into the filter’s design since it does
not need any assumption of them, resulting in a more accurate estimation of the system
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states.

The purpose of prosthetic hands is to determine whether selected fingers are
fully closed, opened, or to grasp an object, rather than the fingertips’ precise position and
orientation. Thus, the estimation error obtained in this experiment is sufficient for ADLs’
apt fulfillment. Most limb-impaired prefer basic functionalities such as holding bottles,
books, or glass rather than performing complicated tasks such as writing or manipulating
objects with their fingers. In those cases, they prefer to use their healthy limb, if that is
the case. This reinforces the idea that better and more robust controllers are necessary to
feel confident using this type of assistive device. Another relevant aspect is the robustness;
despite the disturbances presented in armature current measurements, as shown in Figs. 6.2
and 6.3, where some discrepancies affect the estimation of the full state; however, it was
possible to drive back the finger to the desired position.

Therefore, the proposed strategy behaves as expected, reducing noise effects on
estimation and other disturbances’ effects, showing better results with the full-order filter
presented in 4.2, which guarantees better robustness level than the method proposed in
4.1. Additionally, this strategy was used to determine the kinematics and dynamics of each
finger of any particular assistive device, such as the Galileo Hand, as shown in Figs. 6.4,
6.5, and 6.6. These results can be used to design more sophisticated control strategies for
sensorless and affordable prosthetic hands, such as gravity compensation and impedance
control, improving the functionality of the aforementioned prosthetic devices.

On the other hand, both theoretical remarks for landmark-based localization
approaches were successfully validated for small and static environments, as shown in
Fig. 6.7. More extensive performance tests must be done to validate its functionality in
large environments. However, the methodologies’ performance was almost unaffected when
detecting fewer landmarks since both filters converged even when only two landmarks
were observed. Nevertheless, the computational load seems expensive for large amounts of
landmarks, for example, when using all laser measurements as landmarks (polynomial-
time complexity, at least O(n6) for general purpose solvers) (GAHINET et al., 1994;
VANDENBERGHE et al., 2005).

The computational load rises due to the linearization step through Taylor series
expansion about an operating point, which implies solving an optimization problem in
each algorithm’s iteration. However, both methods present good results by only observing
two landmarks. It is also interesting to explore other linearization methodologies. This
implies modeling the non-linearities as LPV systems or even using Takagi-Tsugeno fuzzy
models to reduce the computational load and determine better LMIs characterizations
to solve this specific problem better. Therefore, the problem’s complexity could become
a more challenging problem, but the filter parameters would not have to be calculated
at each iteration as done. On the other hand, as shown in Fig. 6.9, the second approach
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guaranteed a lower RMSE and norm than the first one, providing encouraging results for
future large-scale implementations, validation with other types of sensors and kinematic
models; and for possible experimentation by merging with other methodologies. Therefore,
the full-order robust filter performed better than the other two compared methods in
terms of RMSE and the level of robustness achieved. This means that the upper bound
that limits the energy gain from the noise inputs to the estimation error ratio is lower
than the others, guaranteeing better performance and robustness (more conservative), as
no assumptions were made about the noise.

Therefore, the LMI-based H∞ filter estimation methods also offer more flexibil-
ity in the design process, allowing for incorporating additional performance specifications
and constraints. However, designing filters that meet specific requirements, such as stability,
robustness, and performance, is more challenging. Since LMI-based methodologies have
been growing during the last decades, and the computational power needed to handle
this approach, reliable and user-friendly LMI machinery to solve the convex optimization
problems related to robust filtering are needed to get better solutions for large-scale
problems.

Besides, these methodologies could also be adapted and expanded for tracking
and SLAM problems. Its ability to localize a robot within an environment with only two
landmarks makes it promisingly competitive against other algorithms. This advantage and
the excellent performance shown by the results, especially when dealing with disturbances
and noise inputs that are not necessarily Gaussian, make it attractive for use in other
technological fields, such as virtual reality (VR), augmented reality (AR), and even for
biomedical purposes, such as use in colonoscopy or endoscopy simulators used for the
training of clinical personnel in which the tracking or location of biomedical instruments
is critical for the proper handling of this type of instrumentation.

Overall, the results of this thesis suggest that the LMI-based H∞ filter esti-
mation methods are a promising alternative to the Kalman filter and other stochastic
approaches for linear systems with uncertain or noisy inputs. The robustness, accuracy,
and flexibility of the LMI-based approach make it a suitable candidate for a wide range
of real-world applications, including assistive robotics. However, further research can be
conducted to explore the effectiveness of the LMI-based approach in more complex and
non-linear systems through more advanced methods such as Takagi-Tsugeno fuzzy models
or LPV control techniques.
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