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Abstract—Localization is still one of the most fundamental tasks
for autonomous navigation of mobile robots. However, the existing
methods lack robustness when dealing with uncertainties without
assuming some characteristics about noise inputs and the non-
linearity of the measurement models. In this work, a theoretical
basis for designing two separate extended robust filters based
on linear matrix inequalities is proposed to solve the localization
problem. The first approach is based on the design of an H∞
observer-based filter through a two-step prediction correction
structure. In this way, a convex optimization problem needs to
be solved at each time step to determine the observer-gain that
corrects the predicted pose of a differential wheeled robot. The
second approach considers the advantages of a full-order filter
which guarantees a better performance under the H∞ robust
requirements. Besides, satisfactory results that validate theoretical
remarks were performed in real and virtual scenarios through
simulation frameworks.

Index Terms—Localization, Optimization and Optimal Control,
Robust Control of Robotic Systems.

I. INTRODUCTION

In many mobile robots’ applications, the localization prob-
lem plays a fundamental task in autonomous navigation sys-
tems, from simple tasks such as vacuum cleaners and floor
mops to self-driving cars and delivery robots. Thus, this
task has been studied over decades, facilitating a variety of
approaches to address this problem. These approaches differ
mainly due to the techniques involved in dealing with the
problem, specifically the methods to represent the belief about
the current pose of the robot and the different sensors used
to acquire information about its surroundings. In this way, to
achieve full autonomy, only onboard sensors must be used to
perform the robot’s localization [1]. Thus, one of the most
common methods used to predict a mobile robot’s current
pose is the dead reckoning technique through the use of
encoders [2,3]. Nevertheless, the prediction error increases as
the robot travel, degrading the pose estimation of the platform,
especially for long trajectories and even worse on slippery
surfaces [4].
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On the other hand, various types of vision sensors (e.g., Li-
DARs, cameras, and radars) are currently used for mobile robot
localization. Data provided by specific sensors are processed to
measure some specific parameters of the robots environment. In
this way, the system can detect specific landmarks that help the
robot to be located within the surrounding environment [3,5].
The main disadvantage of these techniques relies on their
dependence on the characteristics of the environment leading
to erroneous interpretation of the provided measurements [1].

The most common approach to deal with the problem of
robot localization is the probabilistic one which is based on
the Bayesian estimation. Classical algorithms like the Kalman
Filter (KF) and the extended Kalman Filter (EKF) make
stochastic assumptions about the process and sensor noises,
treating them as additive Gaussian noise [6]–[8]. However,
it is well known that in real applications, the probability
distributions are multimodal, and the nonlinearities of the
system degrade the performance of these methods as well.
Furthermore, other methods like the Monte Carlo approach
and the Markov-chain-Monte-Carlo-based methods deal with
the problem without making any assumption about noise char-
acteristics [9]–[12]. Nowadays, other mainstream techniques
are based on the fast laser scan matching approach, which
is based on the iterative closest points (ICP) and the normal
distribution transform (NCP) algorithms [13]–[16]. However,
some drawbacks are present due to issues with the beam
sensor model. Modern optimization-based techniques include
incremental constrained smoothing for state estimation, mainly
to solve the simultaneous localization and mapping (SLAM)
problem [17]. Its limitation is the need for a fixed linearization
point for older states, making it unsuitable for highly nonlinear
problems. Also, run-time performance can be further improved
by exploiting sparsity in constraint jacobians.

This work presents the theoretical basis of two more con-
servative and robust methods to the probabilistic approach
and their proper reformulation to the landmark-based mobile
robot localization problem. These methods are based on the
robust extended H∞ filtering methods as described in [1,18].
Therefore, these approaches differ because they take advan-
tage of robust filtering and linear matrix inequalities (LMIs)
methodologies, one of the most powerful tools to formulate
control systems as described in [19,20]. Thus, our method-
ologies consider nonlinear systems with unknown noise inputs
through general noise vectors that only require to be energy-
bounded and that are also difficult to solve analytically [21].
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In addition to that, the landmark-based methodologies pro-
posed throughout this work ensure that the energy gain from
the noise inputs to the estimation error ratio is limited by an
upper-bound limit, which guarantees the convergence of its
solution. The first technique is based on the design of an H∞
observer-based filter under a two-step prediction-correction
structure. In contrast, the second approach considers a full-
order filter H∞, which guarantees better robust performance
requirements than the previous one. In both methods, a convex
optimization problem has to be solved at each time step
to determine the filter parameters that estimate a differential
wheeled robot’s pose. This leads to a better solution to more
complex estimation problems than the analytical way (finding
feasible suboptimal solutions by solving the Riccati equation,
as done in works [1,18]), allowing the model of the process
and measurement’s noise effects in a more general and robust
way [22,23].

The notation used throughout this work is as follows: capital
and small bold letters stand for matrices and vectors, respec-
tively; the rest denote scalars. For vectors and matrices, (T )
indicates transpose. For symmetric matrices, P > 0 indicates
that P is positive definite; similarly with P ≥ 0 denoting it as
non-negative definite. For a transfer function H(z) analytic for
|z| ≥ 0,

∥∥H(z)
∥∥
2

and
∥∥H(z)

∥∥
∞ denote the standard H2 and

H∞ norms, correspondingly. For the sake of easing the notation
of partitioned symmetric matrices, the symbol ? indicates,
generically, each of its symmetric blocks.

The rest of this paper is structured as follows: Section II
elaborates on the discrete kinematics of a differential drive
for two-wheel mobile robots. Besides, the laser-based measure-
ment model is described, assuming a well-known method for
associating correspondences between known landmarks and the
output provided by a feature extraction algorithm. Section III
proposes a discrete-time H∞ observer to handle unknown
measurements and process noises, as well as a method to
determine its optimal and robust gain through the utilization of
LMI methods. While Section IV proposes another LMI-based
method to find a full order robust filter that guarantees a lower
H∞ norm. Finally, experimental results and conclusions are
presented in Sections V and VI.

II. PROBLEM STATEMENT

Localization of mobile robots in a two-dimensional space
requires a mathematical model to describe the robot’s position
as a rigid body on wheels moving across a horizontal plane.
Hence, the discrete kinematic model of the differential drive
for mobile robots is considered as follows [24].

xk+1 =

 xk + ∆Tvk cos
(
θk + ∆ωk/2

)
yk + ∆Tvk sin

(
θk + ∆ωk/2

)
θk + ∆Tωk

 (1)

where xk ∈ Rn is the robot state vector at time k. Thus,
xk = [xk, yk, θk]

T, where xk and yk are the Cartesian
coordinates of the main axis midpoint between the two driving
wheels and θk is the orientation of the robot respect to the

inertial frame, while ∆T is the sampling period of the process.
Besides, the input control vector uk ∈ Rp is defined as
uk = [vk, ωk]

T where vk and ωk are the linear and angular
velocities of the robot, respectively.

In this way, the kinematic model described in the Eq. (1)
can be rewritten in the following form

xk+1 =

 1 0 0
0 1 0
0 0 1

xk +

 ∆Tvk cos
(
θk + ∆ωk/2

)
∆Tvk sin

(
θk + +∆ωk/2

)
∆Tωk


xk+1 = Axk + f̃(xk,uk) (2)

where A ∈ Rn×n is the process matrix and f̃(xk,uk)
represents the nonlinear effect of the control input that also
depends on the orientation of the robot θk, as is shown in
Equation (2). So, for the sake of simplicity in the notation,
the nonlinear term will be denoted by the matrix B1,k. Also,
it is essential to emphasize that this term does not affect the
dynamic of the filters proposed in Sections III and IV.

Furthermore, a mathematical model of the sensor that ac-
quires information about the environment is required as well.
Thus, for this particular case, the 2-D laser-based measurement
model was adopted as follows

yk = g(xk) =


√

(xm − xk)2 + (ym − yk)2

arctan

(
ym − yk
xm − xk

)
− θk

 (3)

where yk ∈ Rq is the measured output vector, xm ∈ R
and ym ∈ R are the Cartesian coordinates of one landmark
(for N landmarks, the length of the output vector has to be
equal to 2N ). Furthermore, yk = [ ρk φk ]T, where ρk ∈ R
and φk ∈ R are the euclidean distance and the angle from the
robot position to a landmark. Besides, well-known methods
for feature extraction (corners) and landmark correspondence
are assumed [14]. However, occupied cells from an occupancy
grid map can be considered as individual landmarks, and the
correspondence with each laser measurement can be performed
using a bi-linear interpolation [13].

Since the measurement model g(xk) is nonlinear and time-
variant, this expression can be expanded in a Taylor series about
the operating point x̂k ∈ Rn as follows

Ck = |

 −
(xm − xk)

ρk
− (ym − yk)

ρk
0

(ym − yk)
ρ2k

− (xm − xk)
ρ2k

−1


∣∣∣∣∣∣∣∣
xk=x̂k

(4)

Thus, to solve the localization problem under the methods
presented in the following Sections, it is necessary to linearize
the measurement model g(xk) at each time step k. This implies
solving a convex optimization problem in each iteration of the
algorithm, precisely a semi-definite programming problem via
interior point methods [25].



III. DISCRETE-TIME H∞ FULL-STATE OBSERVER

Throughout this section, a robust localization algorithm
based on LMI methodologies is presented. In general, consid-
ering a linear time-invariant (LTI) system at a sampling time
k where noise inputs corrupt the state and measured vectors,
it is described as follows

xk+1 = Axk + B1,kuk + B2wk (5)

yk = Ckxk + D1vk + D2wk (6)

where wk ∈ Rr and vk ∈ Rs are the process and mea-
surement noise vectors, respectively. Besides, B1,k ∈ Rn×p is
the control input matrix at time k (which does not affect the
error dynamic of the filter), C ∈ Rq×n is the measured output
matrix and B2 ∈ Rn×r is the process noise matrix, D1 ∈ Rq×s
and D2 ∈ Rq×r are the process and sensor noise matrices
affecting the output. So, by defining a general noise vector,
w̃k = [wk vk]

T , a two step prediction-correction observer-
based filter can be described by

x̄k = f(x̂) = Ax̂k + B1,kuk (7)

x̂k+1 = x̄k −K(yk − ŷk) (8)

where x̄k ∈ Rn is the predicted state and x̂k ∈ Rn is the
estimated one; ŷk ∈ Rn is the estimated output and K, the
observer gain.

Since the initial conditions of the estimated state x̂0 are
equal to those of the initial state x0 = [0 0 0]

T . Thus, from
expressions (5)-(8), the filtering error dynamic is given by

ek+1 = Aoek + Bow̃k (9)

ỹk = Coek + Dow̃k (10)

with

Ao = A + KCk Bo = [B2 + KD2 KD1]

Co = Ck Do = [D2 D1]

The main goal is to find an optimal robust observer-based
filter for the system composed by (5) and (6), where the error
filtering, ek, has to satisfy that ‖ek‖2 ≤ γ(‖wk‖2 +‖vk‖2),
with the robustness level γ ∈ R s.t. γ > 0. Therefore, from
the bounded-real lemma and given the transfer function H(z)
in the complex frequency-domain, the norm H∞ can be char-
acterized using ν(xk) = xTkPxk as Lyapunov function [26],
imposing that

∥∥H(z)
∥∥
∞ < γ ⇔ ∃P ∈ Rn×n s.t. P = PT ≥ 0 (11)

where


P AT

o P 0 CT
o

? P PBo 0

? ? Ir DT
o

? ? ? γ2Iq

 > 0 (12)

Hence, an observer meeting the requirements as mentioned
above can be successfully established if a solution to the
following convex optimization problem can be found

min
Z,P=PT>0

γ (13)

which is subject to the following LMI


P ATP+CT

k Z
T 0n×r 0n×r CT

k

? P PB2 + ZD2 ZD1 0n×q

? ? Ir 0r×r DT
2

? ? ? Ir DT
1

? ? ? ? γ2Iq

 > 0

(14)
where the matrices Z ∈ Rn×q and P are the variables of

the problem [19]. Also, K ∈ Rn×q can be recovered using the
following expression

K = P−1Z (15)

To further improve the system’s robustness, a slack variable
G ∈ Rn×n can be incorporated such that

min
Z,G,P=PT>0

γ (16)

subjected to the following LMI


P ATG+CT

k Z
T 0n×r 0n×r CT

k

? G+GT −P GTB2 + ZD2 ZD1 0n×q

? ? Ir 0r×r DT
2

? ? ? Ir DT
1

? ? ? ? γ2Iq

 > 0

(17)
Moreover, since G + GT > P > 0, it implies that G is

non-singular [19], resulting in K being able to be recovered
using the following expression

K = (GT)−1Z (18)

IV. DISCRETE-TIME H∞ FILTER

On the other hand, the problem of designing a full order
robust filter (i.e., a n = nf ) is addressed. This method
guarantees a lower robustness level γ, that upper bounds the
maximum magnitude of the transfer function from the noise
inputs to the estimation error. This way, considering an LTI
discrete-time system at sampling time k (as shown in Fig. 1)
in the following form



Fig. 1: Discrete-time system with a full order filter scheme.

xk+1 = Axk + B1,kuk + B2wk (19)

zk = C1xk + D11wk (20)

yk = C2,kxk + D21vk + D22wk (21)

where zk ∈ Rn is the output reference vector, C1 ∈ Rp×n
is the output reference matrix, C2,k ∈ Rq×n is the measured
output matrix, D11 ∈ Rp×r and D22 ∈ Rq×r are process
noise matrices; and D21 ∈ Rq×r is the sensor noise matrix.
Besides, xk, yk, wk, vk, A and B2 are defined as was done in
expressions (5) and (6). Since the measurement model g(xk) is
nonlinear and time-variant, C2,k needs to be equal to its Taylor
series expansion Ck.

Hence, using the general noise vector w̃k and the per-
formance requirements previously defined in Section III, the
dynamic of the optimal guaranteed robust H∞ filter can be
described by

x̂k+1 = Af x̂k + Bfyk (22)

ẑk = Cf x̂k + Dfyk (23)

where x̂k ∈ Rnf is the estimated state, ẑk ∈ Rn is the
estimated output. So, the matrices Af ∈ Rn×n, Bf ∈ Rn×q ,
Cf ∈ Rp×n and Df ∈ Rp×q are to be determined [20]. Thus,
from expressions (19)-(23) and considering ek = zk − ẑk as
well as the control input does not affect the dynamic of the
filter, an augmented state dynamic is given by

x̃k+1 = Aax̃k + Baw̃k (24)

ek = Cax̃k + Daw̃k (25)

with

Aa =

[
A 0

BfC2 Af

]
Ba =

[
B2 0

BfD22 DfD21

]
Ca =

[
C1 −DfC2 −Cf

]
Da =

[
D11 −DfD22 DfD21

]
Therefore, the optimal guaranteed robust filter that satisfies

the requirements described in Eq. 11, can be successfully

characterized if and only if there exists a symmetric matrix
P = PT > 0 such that

P PAa PBa 0

? P 0 CT
a

? ? Ir DT
a

? ? ? γ2Iq

 > 0 (26)

In this way, following the same methodology applied in [20],
where the matrices P ∈ R2n×2n and its inverse are partitioned
into n × n blocks to convert the nonlinear matrix inequality
into an LMI as follows

P =

 X In

In X̃

 P−1 =

 Y VT

V Ỹ


The robust filter can be characterized if and only if there exist

positive defined symmetric matrices X,Y ∈ Rn×n, X̃, Ỹ ∈
Rn×n, with Z = Y−1; the matrix V ∈ Rn×n as well as the
following matrices F ∈ Rp×n, G ∈ Rn×n, Bf and Df , that
minimize the robustness level γ subjected to the following LMI



Z Z ZA ZA

? X XA+ κBfC2 +G XA+ κBfC2

? ? Z Z

? ? ? X

? ? ? ?

? ? ? ?

? ? ? ?

]

[

ZB2 0n×r 0n×p

XB2 + κBfD22 κDfD21 0n×p

0n×r 0n×r CT
1 −CT

2 Df
T − FT

0n×r 0n×r CT
1 −CT

2 Df
T

Ir 0r×r DT
11 −DT

22Df
T

? Ir DT
21Df

T

? ? γ2Ip


> 0

(27)
where κ ∈ Rn s.t. κ > 0 can be freely selected by the

designer. Besides, the remaining matrices that describe the
dynamics of the filter are given by

Af =
1

κ
G(VZ)−1 Cf = F(VZ)−1 (28)

with V = 1
κ (In − XZ−1), defined to simplify the notation.

Finally, it is important to note that matrices Z, X, F, G, as
well as the matrices Bf and Df who also describe the dynamics
of the filter are variables of the problem. The main difference
with the methods presented in Section III is that unlike finding
an observation gain we are finding a full order dynamic filter
given by the matrices Af , Bf , Cf and Bf .



Fig. 2: Robot trajectory under a real controlled environment.
Green cross is the robot’s initial position, blue cross is the
final estimated position, while green and doted red line are the
ground-truth and the estimated trajectory, respectively.

V. RESULTS

The experiments to test and validate the methods mentioned
above were carried out using the Pioneer 3-DX robot from
Adept MobileRobots in real and virtual scenarios. The real
robot is equipped with a Sick LMS100 2D LiDAR, while
the virtual model utilizes the fast Hokuyo 2D LiDAR avail-
able in the CoppeliaSim simulator [27]. In addition, although
the algorithms were tested in a large environment using the
simulator, a small static environment which is composed of
flat surfaces (i.e., walls) was built as shown in Fig. 2, both
in a real scenario and under the virtual robotic simulation
framework. This environment was built within an area of
4.67×3.18 meters. Thus, nine landmarks (corners) were placed
at Cartesian coordinates (xm, ym) in meters, as follows: L =
{(0.0, 0.0), (0.0, 2.26), (0.92, 2.26), (0.92, 3.18), (4.19, 3.18),
(4.19, 2.325), (4.67, 2.325), (4.67, 0.665), (4.03, 0.0)}. This
environment was more suitable to validate, evaluate, and
compare both algorithms’ performance concerning the EKF
algorithm.

On the other hand, MATLAB, YALMIP and MOSEK [28]–
[30] were used to implement the robustH∞ the proposed local-
ization methods, in addition to solve the convex optimization
problems in terms subjected to the LMIs described in Eqs. (14),
(17) and (27) via interior point methods [25]. This, with the aim
to determine the parameters of the H∞-based filters described
in Eqs. (15), (18) and (28). Furthermore, successful results were
obtained with both methodologies. However, since the results
were quite similar, only the results obtained by the filter gain
described by the Eq. (18) are shown in Fig. 2, where the solid
green line illustrates the ground-truth trajectory of the robot,
while the red dashed line illustrates its estimated position. The
green and blue crosses represent the initial and final position

of the robot, respectively. In contrast, the black dashed line
and small crosses illustrate the static environment and the
landmarks’ real positions. Therefore, performance parameters
for this scenario, such as the robot pose estimation errors
for each iteration, as well as the approximated robustness
level γ, are shown in Fig. 3. These results were obtained
using the two proposed methods and the EKF from a data
collection of 500 samples at a sampling frequency of about
10 Hz. Each sample is composed of the control input vector
uk and a measurement vector with the 241 laser measurements
at time k. As was previously mentioned, well-known feature
extraction (corners) and landmark correspondence algorithms
were employed. Each solution’s complexity depends on the
number of detected landmarks in the environment, which was
reflected in the number of variables to solve in each iteration.
However, both proposed methods provide convergence even if
only two landmarks are observed at any time-step. For the first
proposed method, the amount of variables oscillates between
34 and 82 at each iteration, and its behavior is described in the
same way as the Fig. 3(b) for the second method, the number
of variables remain constant (40). In all the tests, the observer-
based filter gain matrix and the dynamic filter matrices were
calculated below a time interval of approximately 0.1 s.

Furthermore, both methodologies present small state esti-
mation errors. The Fig. 3(a) shows the state estimation error
from the observer-based filter using slack variables, as proposed
in Section III and tested under a real scenario; while the
Fig. 3(c) presents the estimation error from the EKF, also tested
under a real scenario. The root mean square error (RMSE)
for each of the states are [1.645 mm, 1.482 mm, 1.874◦]T

and [6.339 mm, 4.363 mm, 4.311◦]T, respectively. For the
method proposed in Section IV, the RMSE is about
[1.213 mm, 1.028 mm, 0.754◦]T, showing a better result than
the previous methods.

Finally, as it is shown in Figs. 3(b) and 3(d) the approximated
value of γ depends on the amount of landmarks detected. This,
because the length of the measured output matrix Ck depends
directly on the number of variables involved in the convex
optimization problem.

VI. CONCLUSIONS

Both theoretical remarks for landmark-based localization
approaches were successfully validated for small and static
environments, as shown in Fig. 2. More extensive performance
tests have to be done to validate its functionality in large
environments. However, the methodologies’ performance was
almost unaffected when a smaller amount of landmarks was
detected since both filters converged even when only two
landmarks were observed. Nevertheless, the computational
load seems expensive for large amounts of landmarks, for
example, when using all laser measurements as landmarks
(polynomial-time complexity, at least O(n6) for general pur-
pose solvers) [31,32]. The computational load rises due to
the linearization step through Taylor series expansion about
an operating point, which implies solving an optimization



Fig. 3: Robot pose estimation error throughout each iteration using the method proposed in Section III under a real scenario, and
using the method proposed in Section IV under the CoppeliaSim environment are shown in sub-figures (a) and (b). (c) Robot
pose estimation error throughout each iteration using the Extended Kalman Filter (EKF) under a real scenario. (d) Robustness
level γ at each iteration using the method proposed in Section IV and under the CoppeliaSim environment.

problem in each algorithm’s iteration. However, both methods
present good results by only observing two landmarks. It is
also interesting to explore other linearization methodologies.
This implies modeling the non-linearities as linear parameter-
varying (LPV) systems or even using Takagi-Tsugeno fuzzy
models to reduce the computational load but also to determine
better LMIs characterizations to solve this specific problem in a
better way. Therefore, the problem’s complexity could become
a more challenging problem, but the filter parameters would not
have to be calculated at each iteration as be done. On the other
hand, as shown in Fig. 3, the second approach guaranteed a
lower RMSE and norm than the first one, providing encourag-
ing results for future large scale implementations, validation
with other types of sensors and kinematic models; and for

possible experimentation by merging with other methodologies.
Therefore, the full-order robust filter performed better than the
other two compared methods, not only in terms of RMSE but
also for the level of robustness achieved. This means that the
upper-bound that limits the energy gain from the noise inputs to
the estimation error ratio is lower than the others, guaranteeing
better performance and robustness (more conservative), as no
assumptions were made about the noise. Finally, since LMI-
based methodologies have been growing during the last decades
and the computational power needed to handle this approach,
reliable and user-friendly LMI machinery to solve the convex
optimization problems related to robust filtering are needed in
order to get better solutions for large scale problems.
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