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Abstract—The complexity of User-Prosthesis Interfaces (UPIs)
to control and select different grip modes and gestures of active
upper-limb prostheses, as well as the issues presented by the
use of electromyography (EMG), along with the long periods of
training and adaptation influence amputees on stopping using
the device. Moreover, development cost and challenging research
makes the final product too expensive for the vast majority
of transradial amputees and often leaves the amputee with
an interface that does not satisfy his needs. Usually, EMG
controlled multi grasping prosthesis are mapping the challenging
detection of a specific contraction of a group of muscle to one
type of grasping, limiting the number of possible grasps to
the number of distinguishable muscular contraction. To reduce
costs and to facilitate the interaction between the user and the
system in a customized way, we propose a hybrid UPI based on
object classification from images and EMG, integrated with a
3D printed upper-limb prosthesis, controlled by a smartphone
application developed in Android. This approach allows easy
updates of the system and lower cognitive effort required from
the user, satisfying a trade-off between functionality and low cost.
Therefore, the user can achieve endless predefined types of grips,
gestures, and sequence of actions by taking pictures of the object
to interact with, only using four muscle contractions to validate
and actuate a suggested type of interaction. Experimental results
showed great mechanical performances of the prosthesis when
interacting with everyday life objects, and high accuracy and
responsiveness of the controller and classifier.

I. INTRODUCTION

The main difficulty that both high-end and affordable 3D
printed multi-grasp prosthetic hands present to the end user is
the way that they interpret the user intent. Some prostheses
control the motion of the fingers through an on-off or propor-
tional controller based only on electromyography (EMG) pat-
tern recognition, which has issues towards clinical robustness
such as electrode shifting, force variation, the position of the
limb and transient changes in the signals [1]. Also, the required
cognitive effort and the time spent on training to control
EMG based prostheses do not guarantee that the amputees will
reach full control of the device. This fact combined with the
reduced functionality of low-cost solutions brings frustration to
users and lead them to stop wearing the devices rapidly [1,2].
Furthermore, according to the last world reports on disabilities,
there is a significant number of people with amputations
that resides in developing countries without any possibility to
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acquire prosthetic care provided by public health entities. Not
to mention the problematic acquisition of leading commercial
upper-limb prostheses or even conventional ones because of
their elevated prices [3,4]. Thereby, solutions based on 3D-
printed technology are growing since they address problems of
availability, high cost and offer an extended set of grasps and
gestures [5]–[8]. Moreover, to better interpret the user’s intent,
some research projects had focused on developing multi-modal
approaches to control upper-limb prosthetic hands [9]–[11].

Fig. 1. Galileo Hand, 15 DOF under-actuated 3D-printed bionic version
mounted with a webcam.

Based on this scenario, we integrated an original User-
Prosthesis Interface (UPI) based on object classification from
images with the Galileo Hand, which is an open-source, multi-
grasping and anthropomorphic upper-limb prosthesis [7,12].
This integration not only increases the range of target users and
allows a widespread distribution, but also reduces the cognitive
load required from the users due its multi-modal approach.
The UPI takes advantage of the EMG pattern recognition of
the MYO Armband from Thalmic Labs – a well-known device
developed to be used in gaming that has proven its viability
as a replacement of the expensive EMG devices [13,14]. This
way, the user can interact consciously with the system by
using a predefined set of muscle contractions interpreted by a
smartphone through an Android application. This application
uses a pre-trained Convolution Neural Network (CNN) model
implemented with TensorFlow. This network classifies images
of everyday life objects and returns a label from pictures taken
by a webcam, where this label serves as an entry to a database
that suggests a predefined set of actions for the prosthesis.



This approach allows achieving common types of grasping
based on the Cutkosky grasp taxonomy and the Be-bionic
hand [15,16] and more complex customized actions such as
time-based actions. This user-friendly system allows flexibility
when it is integrated into activities of daily living (ADLs),
reducing the period of training, adaptation and cognitive effort
required from the user [17].

This work is divided into V sections. This first section
presented an introduction to the problems faced by amputees
towards upper-limb prosthetic devices. An overview of the
state of the art about the control of upper-limb prostheses is
described in Section II. Methods involved in the design and
integration of the UPI with the Galileo Hand are described
in Section III. Experimental results and conclusions about the
classification and functionality of the system are presented in
Sections IV and V.

II. RELATED WORK

Traditionally, research on upper-limb prosthesis control was
focused on different techniques based on the preprocessing of
EMG signals to analyze the user intent and to activate the
prosthesis with a specific activation profile. Typical commer-
cial hands use state machines activated by a single feature of
a predefined subset of muscle activity, while the majority of
sophisticated research hands are based on pattern recognition
in a multi-modal approach. The multi-modal approach uses a
set of EMG features combined with information from other
types of sensors. This approach is used to address some of
the well-known issues of EMG techniques, such as the limb
position effect, that is solved using Inertial Measurement Units
(IMUs) to improve the classification process associated with
this issue [9,18]. Additionally, some multi-modal approaches
implement combination of EMG and mechanomyography
(MMG) features captured by a microphone (mMMG) and an
accelerometer (aMMG) showing an increase in the classifica-
tion accuracy [19]. Also, a new approach are taking advantage
of the Optical Fiber Force Myography (FMG), as an affordable
and more accurate alternative to the EMG [20].

Hybrid or multi-modal systems were also introduced to
improve the user control of prosthetic devices. As an example,
an EMG and Radio Frequency Identification (RFID) hybrid
system uses RFID tags on specific objects to reduce the
cognitive effort to operate a prosthesis [21]. In the same way,
other systems have been experimented with the use of EMG
hybrid control in different manners, such as voice-controlled
approaches in a combination of graphical visual feedback
through a touchscreen LCD, allowing the users to decide
between different modalities to control their prosthetic device
in a more flexible and friendly way [11]. Besides, there are
several approaches for the use of Brain-Machine Interfaces
(BMIs) as a means to control upper limb prostheses. The most
recent work is based on high-density electrocorticography
(ECoG), which allows the user to individually control the
fingers naturally. Leaving aside its excellent and promising
results, the use of ECoG is an invasive and expensive method
that requires the implant of an ECoG array in the brain and
a targeted muscle re-innervation (TMR) on a specific set of

muscles. Both the implant of ECoG and TMR are challenging
procedures to get for most of the amputees [14].

Other studies implemented a combination of BMI with
other technologies, taking advantage of voice recognition, eye
tracking, and some computer vision techniques. Nevertheless,
the mentioned systems required high levels of concentration
and training, entailing a massive cognitive effort from the
user [22,23]. Computer vision approaches have also been
proposed to control prosthetic devices, such as the one-shot
learning method implemented to generate specific grasps for
unknown objects. This method generalizes a single kinesthet-
ically demonstrated grasp to generate many grasps of other
objects of different and unfamiliar shapes” [24]. Meanwhile,
another work proposed a hybrid control using augmented
reality (AR) glasses with an integrated stereo-camera pair and
an EMG interface for activation by detecting muscle activity.
This system can automatically select the type of grasp using
stereo-vision techniques while the users are allowed to adjust
the grasp selection using the AR feedback, obtaining low effort
control and significantly better results [25].

Finally, to increase the functionality of multi-grasping
upper-limb prosthesis, some studies developed hybrid deep-
learning artificial vision systems combined with EMG. Aiming
to improve the way that the system interprets the user intent,
the system associates a subset of objects to a specific kind
of grasp based on the geometric properties of the object.
The classification task is done through an object classifier
implemented with a CNN in [26,27]. Following the line of
artificial vision-based systems, the next section presents the
details of the implementation of this work proposed interface.

III. SYSTEM ARCHITECTURE

The system is based on the interaction of four different
devices: a smartphone, a webcam, the MYO armband and the
Galileo Hand showed in Fig. 1. It interprets the user intent
and controls a prosthetic device in a friendly way, allowing the
user to associate an expendable list of 14 indexed predefined
interactions (i.e., grasping and hand motion) with a vast list of
objects in a customized way. The predefined interaction hand
motions are described in [12]. The diagram showed in Fig. 2
proposes a flexible prosthesis controller, with the capability
to provide customized hand postures that best suit the users
lifestyle using commercial easy-to-acquire devices with a 3D-
printed and open-source prosthesis.

Fig. 2. Block diagram showing the integration and interaction between the
different devices of the system.



A. User-Prosthesis Interface

Because of the limitations of traditional activation profiles
for upper limb prosthesis, the implementation of the UPI
relies upon a hybrid methodology based on our previous
work tested and validated with a prosthetic simulation using
the V-REP robotic framework [12,28,29]. In this work, the
EMG signals to interact with the prosthesis are the subset of
muscular contractions Q = {q0, q1, q2, q3} performed by the
user, where q0 to q3 are defined as the contractions classified
as fist, open hand, wave in (hand flexion) and wave out
(hand extension) respectively. These contractions are classified
directly from the residual limb of transradial amputees by
the default EMG pattern recognition system from the MYO
armband’s firmware. The aim is to interact consciously with
the system through a Finite State Machine (FSM) implemented
on a smartphone through an Android App.

Therefore, the smartphone acts as a central device that
interacts with the other devices in a transparently way, using
the muscular contraction as the transition to navigate through
the state machine, to take a picture and initiate, invalidate or
cancel the proposed interaction suggestion. In the initial state
S0, the prosthesis stays in a natural rest posture while the UPI
stays on idle until the user points the mounted camera towards
the specific object with which he wishes to interact. Then the
user performs the contraction q0 to trigger a transition to the
state S1. In this state, the system takes pictures of the object
that are classified by a CNN, until a valid label l is defined.
A label’s validity is obtained with the classification certainty
reaching a heuristic threshold that consequently triggers the
transition to change to the state S2. If the process does not
return a valid label, the UPI returns to the state S0, upon a
predefined timeout t. The FSM diagram of the implementation
is shown in Fig. 3.
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Fig. 3. Finite State Machine implementation of the User-Prosthesis Interface
using the hybrid EMG Controller based on object classification.

A list of one thousand objects associated to labels is
implemented as a dictionary where the most used type of grasp
is linked with the highest probability value to be suggested to
the user. Hence, in the state S2 the result of the classification
is presented by audio played on the smartphone with the
name of the object, while the LCD mounted on the Galileo
Hand presents an animation associated to the suggested type
of grasp. The user can either accept the suggestion of the
dictionary by performing the contraction q2 and triggers the

transition to the state or state S3 or reject it by performing
the contraction q3. In this case, the system stays on state S2

and suggests the next most appropriate grip. This way, the
UPI adapts to the ADLs of the user in a customized way
presenting flexibility to the user due to the successive propos-
als of the system that modifies the probability values on the
dictionary. In case an object in the dictionary has never been
detected, all the interaction suggestion are equiprobable, and
their increasing interaction index will display the suggestion
sequence. Then, in the state S3, the prosthesis performs the
accepted grip and release it by performing the contraction q1.
In exceptional cases such as in the mouse grip or the active
index grip, secondary actions are triggered by performing the
contraction q3 [12,16].

B. Galileo Hand Prosthesis
Galileo Hand is an anthropomorphic and underactuated

prosthetic hand intended to be released as an open-source
project. The weight below 360g allows an affordable and
highly functional prosthesis with a price about $350, where
mechanical parts (except for the motors) were designed to be
manufactured using 3D printing technologies. The prosthesis is
intrinsically-actuated, providing more flexibility and reaching
a broader audience. Besides, the design has fifteen Degrees of
Freedom (DOF) and six Degrees of Actuation (DOA). As the
prosthesis is an under-actuated design, it performs the grasps
with six miniature brushed DC gearmotors with an output
torque around 60 oz-in. The Galileo Hand has one motor
for the flexion and extension for each finger, plus one motor
dedicated to the rotation of the thumb. However, it can achieve
adaptive grasping to hold objects in the ADLs [7,30].

Fig. 4. Top view of modular palm sections, embedded controller and DC
motors of the Galileo Hand.

The thumb was designed with 2 DOAs aiming to resemble
the six movements of the thumb [31] while doing a trade-
off between performance, space, and ease of printing. It has
one actuator inside the thumb metacarpal phalanx an the other
inside the palm at the base of the metacarpophalangeal joint.
The later using an interesting beveloid gear pair shifting the
axis of rotation 15 degrees, allowing it to perform a larger
prismatic grasp [15]. A custom PCB board was designed
to achieve a self-contained embedded controller to actuate
the fingers that allow flexibility to be fitted in subjects with
different amputation degrees, as shown in Fig. 4.



Fig. 5. System block diagram showing the embedded controller architecture of the Galileo Hand with its respective interfaces.

C. System Integration

Aiming to interact with the smartphone and fulfilling the
requirements presented by the system shown in Fig. 2, the
embedded controller of the Galileo Hand was slightly modi-
fied, and it is shown in Fig. 5. The addition of a Bluetooth
v2.0 module was performed to establish a full-duplex com-
munication between the devices by the use of messages under
the JSON format. Hence, the processes implemented on the
smartphone and the embedded system run in a concurrently
way, allowing modularity and distributing the computational
load in the UPI. This way, the embedded controller can
administrate and execute the commands received from the
smartphone easily and transparently. Also, a small low power
laser was placed strategically, aiming to choose a proper pose
to take a picture of the object that the user wishes to interact.
Moreover, an intelligent LCD module (1.44” TFT LCD screen)
from 4D systems is used to provide modularity through a
simple communication protocol between the LCD and the
embedded controller. The LCD screen allows visual feedback
to the user by showing text and animations of the suggested
grip as shown in the Fig. 6.

In addition, the finger motion controller implements the
movement of flexion and extension through the measurement
of the current, which is proportional to the torque generated
by the DC motor, achieving adapting grasping when executing
the flexion of each finger. However, to reach and perform more
complex gestures and grips, a position controller implemented
with a quadrature encoder was added for precise thumb
rotation movements [7].

Fig. 6. Visual feedback presented to the user. Galileo Hand LCD on the left
and smartphone screen on the right.

D. Object Classification

This module was implemented using TensorFlow under
CNN techniques and integrated with the Android App to
detect and classify objects from the pictures taken with the
webcam. The model used in this work is based on the Incep-
tion architecture that improves the utilization of computing
resources inside the network, such as power and memory
use, ideal for mobile and embedded computing due to its
efficiency, high accuracy, and responsiveness. The main idea
of this architecture is to consider how readily available dense
components can approximate a sparse structure [32]. Thereby,
the implementation of the classification system is divided into
two stages:

1) Off-line learning: The module was trained with millions
of images taken from the ImageNet database, which comprises
100,000 images and about 1000 categories of objects. This
database had to be adapted to the requirements of the system
to reduce the ambiguity given from specific labels. Thus the
size was reduced to 400 frequently used categories. The dataset
was divided into: training (80 %), validation (10 %) and test
(10 %). The module was trained and tested using different
convolutional filters and stripe sizes to determine the best
network configuration.

2) On-line learning: The object classifier is embedded in
the Android App, which also takes a picture, sorts the objects
recognized and then generates a score for each one. This
score is the probability that the object is present in the image.
Therefore, the system generates a label associated with the
object that has the highest score of probability. Once a valid
label is obtained from the module, the system suggests a
specific grip according to its probability of use, as mentioned
in the subsection A.

IV. RESULTS

To validate and test the functionality of the proposed UPI
integrated with the prosthetic hand, six classes of everyday
life objects were chosen as follows: mouse, banana, coffee
mug, wallet, bottle, and ballpoint. A healthy subject tested
the system. He interacted with the objects by performing four
basic grips defined in the Cutkosky’s taxonomy: Power, hook,
precision and lateral grasps [15]. Examples of the satisfactory
performing of these prehensile are shown in Fig. 7. However,
some of the objects need to be placed in a specific place to
be grabbed by the prosthesis.



Fig. 7. Grips performed on the test. (1) Precision grasp. (2) Hook grasp. (3)
Lateral grasp. (4) Power grasp.

The object classifier was trained up to 4000 epochs ob-
taining 92.66% of accuracy with the training dataset. It was
validated with 400 epochs and obtained an accuracy of 89.60%
with the validation dataset. Fig. 8 shows the cross-entropy
loss of the training and validation processes. The blue data
represents the training process, and the red data represents
the validation process. This measure gives feedback about the
performance of our classification model before being tested in
a real scenario. The results showed in Fig. 9 were obtained
from the classification of the everyday life objects. During
the tests, five different objects from the same class were
chosen and presented to the user randomly. The weight of the
prosthesis terminal end device has remained below 450 g, not
taking into account the socket and the battery. The estimated
cost is around $450, including 3D printing materials, electronic
components, mechanical materials and the webcam.

Fig. 8. The cross-entropy error of the training and validation set in blue and
red respectively.

Fig. 9. Classification accuracy rating of a subset of everyday life objects.

V. CONCLUSIONS

This work showed that the UPI proposed has advantages
over traditional systems since its flexible and user-friendly in-
terface increases the number of customized hand postures that
can be performed. The results obtained testing the different
hand prehensile were successful and experimentally validated
as shown in Fig. 7 and in our previous work [7]. The user did
not present any problems to interact with the objects chosen
for the test, except for the ballpoint where the object had to be
placed on a specific place and in a specific pose in order to be
grabbed. Also, it is challenging to keep that particular object
in hand due to the slipping present in this type of objects.
These results are very satisfactory compared with the results
research and commercial prosthesis presented in [5,7,33]–[35].

However, a user with transradial disarticulation does not
need to perform complex tasks with his prosthetic device since
he will use his healthy hand to develop this kind of tasks.
Regarding the everyday life object classification, the lowest
rate was obtained by the interaction with the bottle achieving
70%, while the highest one was obtained by the interaction
with the wallet that reached 100%. This result is explained by
the ambiguity created by the vast amount of object classes
used to train the model, which usually helps to achieve a
better generalization about the classification process. Finally,
we achieved a flexible UPI were the user can associate the
grasp for every classified object in a customized way, allowing
to grab the objects in different ways because of its ability
to update the scores of the most used prehensile through the
implementation of the dictionary. Detailed experimentation of
the performance and the cognitive effort that the user has to
perform will be validated on future work.
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