
SALP: A Scalable Autograder System for Learning 
Programming - A Work in Progress 

Diego Calderón, Erick Petersen, Oscar Rodas 
Universidad Galileo, diegocdl, ptrsen, orodas@galileo.edu 

 
 

Abstract - Programming courses can be hard for students, 
but also for teachers, because of the huge amount of time 
that takes to manually grade each student's assignment 
and the different kind of valid solutions. Moreover, there 
are other problems related to manually grade assignments 
such as completely objective and homogeneous grading. 
In consequence, both students and teachers don't get 
feedback as fast as they should in order to take action and 
reinforce the topics with lower performance on each 
assignment. Finally, the increasing popularity of MOOCs 
makes manually grading no longer viable. To this aim, a 
scalable autograder system is proposed in order to 
provide students with faster feedback and help teachers 
with the evaluation of assignments. Our proposal can be 
used for learning different programming languages like 
Java, Python, C, C# and Ruby. 
 
Index Terms - automated grading, containers, plagarism, 
programming assignments, online grading 

I.  INTRODUCTION 

In the study of science, technology, engineering, and 
mathematics (STEM) careers it's necessary to learn computer 
programming. Especially because the computers are getting 
more powerful and are very common tools for conducting 
studies or solve problems nowadays. For instance 
programming is used for mathematics, electronic engineers, 
biomedical devices, artificial intelligence, data science, etc. 
 Moreover in programming courses it is usual that the 
teacher assigns hands-on laboratories weekly to practice the 
topics that were covered in the lectures. Usually assignments 
contain multiple exercises designed to apply one or more 
theory concepts. Even so the students face different problems 
such as syntax errors, logic errors or misunderstood a topic 
making difficult to finish all the exercises and to grasp all the 
knowledge. In fact, student start to struggle finishing an 
exercise and can not complete the laboratory. Hence in the 
next laboratory there are new exercises that probably require 
the knowledge of the past  exercises which the student didn't 
complete, making even harder to solve these new problems. 
 Furthermore, students start getting frustrated resulting in 
dropping the class or trying to understand the next 
assignments, but unfortunately, it's not easy to recover and 
approve the class in most of the cases. In the past 5 years, we 
have seen a medium  approval rate in our first programming 
course at Universidad Galileo and a high rate of students 
retaking the course. 
 

On the other hand, grading the assignments is a time 
consuming task and is hard to keep giving feedback to the 
students before the next assignment. As a result the teachers 
and the students don't have fast feedback to take actions on 
reinforcing the topics where the students have problems. 
Besides the time that it takes, there are several problems when 
the teacher or the teacher assistants (TAs) manually grade the 
assignments. We can mention a couple of these problems: 

 
• It's very hard to be homogeneous and completely 

objective, especially when you have to grade dozens or 
hundreds of assignments. 

• Provide very detailed feedback is not always possible. 
• Difficult to replicate the same test on all submissions. 
• Can be tricky to test all the possible scenarios on a 

specific exercise. 
• Hard to detect plagiarism. 
• More TAs have to be hired and teach them the 

appropriate manner to conduct the evaluation. 
 

Furthermore, in recent years STEM has been promoted 
worldwide and creating more interest in studying STEM-
related careers. As a consequence, we can see an increment of 
students that are taking programming courses in universities 
and people enrolling in massive open online courses 
(MOOCs) [1]. Hence, in MOOCs usually there are thousands 
of students that make impossible to manually grade the 
assignments. For this reason an automated tool for grading 
assignments is needed.  

In fact there are some options to attempt to solve the 
problem like local scripts or cloud based solutions. For 
instance, local scripts can be written to provide feedback and 
have the advantage of easy distribution and students can run 
them easily on their computers. On the other hand, cloud 
based solutions are more complex to create but the test can 
run in a more controlled environment making them more 
reliable for the teachers. Since students are sending their 
solutions to be grade, this gives an opportunity to have a 
dashboard available for students and teachers in order to show 
the progress in real time. 

Moreover there are some specific work related to make 
automated tools that help to solve this problem [2]-[6] and 
those tools use different approaches to grade the assignments. 
For example, some tools evaluate the output given based on 
some input. This option has several limitations because the 
student can solve the problem in an incorrect way (i.e. 
discover the test cases and just output for the test inputs or use 
loops when the exercise required a recursive algorithm). With 



this option we can not assure people are learning to program 
with the correct fundamentals, we are only grading courses in 
the capability of students to produce the right output. On the 
other hand, other solutions are proposed like using semantic 
formals to evaluate a reference solution against the students 
solutions to determine if it is correct.  

Specifically some work related to autograders has been 
done in some of the introductory computer science courses in 
our university with the goal of provide fast feedback to the 
students. First local scripts were done and the students can run 
a pre-test in their assignments to help them to check if they 
were covering all the requirements. Although those scripts 
help the students, the teachers still didn't have prompt 
feedback of the progress. Hence, a cloud based solution has 
started combining the ideas of the scripts and a very simple 
dashboard where the students and the teachers were able to 
see the results. Nevertheless, the implementation of this 
solution was very simple and some problems started to show 
up which allows us to learn about what should be taken into 
consideration for building a better solution.  

For this reason, in this paper we  present a proposal of a 
cloud-based scalable autograder system for learning 
programming assignments. The next sections in this paper are 
organized as follows: Section II describes the challenges that 
need to be face during the implementation and in Section III 
the proposed architecture to be used. In Section IV our 
preliminary conclusions. 

II. CHALLENGES TO FACE 

There are many things to consider while designing and 
implementing a tool for automated grading assignments and 
the requirements can vary between the course needs: 
 
• Isolation: The tests should be executed in an 

environment controlling the network, memory, disk 
access and the CPU time. For example, the most common 
case is when a student makes an infinite loop and the 
program never stops, so it's necessary to kill the program 
after some define time. Moreover, the network should be 
restricted in assignments where it's not needed, to avoid 
cheating with the use of some API to get the answer to 
the problem. Finally, the system that receives the 
submissions must be isolated from the running tests 
subsystem so the system still accepts submissions besides 
a case of a failure in the grading side of the system. 

• Scalable: Taking into account the fact that MOOCs have 
a very extensive audience, the system should be capable 
to be scaled up in order to handle all students. Moreover, 
the workloads are not even, teacher will assign the 
laboratory and in the first following days a high workload 
will be demanded to the infrastructure and will decrease 
in the next days. In this case, the system should be scaled 
up just for those beginning days. 

• Recovery: It is important to be prepared in case 
something fails. Certain precautions have been taken into 
account but it is hard to cover all possible errors or 
scenarios. Therefore the system should have a recovery 

method that restarts all the unfinished grading tests that 
were executing before the failure. 

• Modular: The system should be capable of being 
flexible in order to support different programming 
languages e.g. Java, Python, C, C#, Ruby, etc. 
Furthermore, accept submissions through different 
platforms such as a bash script, git remote repository (i.e. 
GitHub) and a website. 

• Reports and Analytics: Knowledge of the progress of 
assignments is beneficial for both students and teachers, 
so the system should provide reports in real time. 
Moreover, some students get motivated through 
competition, so a leader board that shows the top 10 helps 
to encourage the students to solve more quickly the 
assignments should be implemented. Furthermore, using 
the information collected, gamification concepts can be 
applied and can help to improve the interest of the 
students in working and finishing the course assignments 
[7]. Finally, data analysis can be implemented to show 
more detailed information and start predicting the 
performance of the students. 

• Plagiarism: One of the more important problems to 
handle in programming courses is the plagiarism and it is 
necessary to detect it as soon as possible. When a student 
starts committing this kind of actions, information should 
be deliver to the teacher so he/she can talk to the student 
and persuade him/her to stop this plagiarism actions [8]. 
Moreover, this is one of the most important features of 
our proposal in order to have accurate reports and grades. 
If plagiarism is not detected soon, information will show 
that students are performing well in the course and 
learning a lot. 

III. SYSTEM ARCHITECTURE OF SALP 

Taking into account all the challenges that we described in 
Section II, the following architecture is proposed as illustrated 
in Figure I: 

 
 

FIGURE I 
THE PROPOSED SYSTEM ARCHITECTURE 

 
1) Web Dashboard: The primary method to interact with the 
system should be a website that allows access control with 



authentication for multiple roles such as student, teacher and 
teacher assistant. For instance, teachers will have the option 
to create assignments and define tests for grading the 
exercises in a determined class. On the other hand, students 
will have the option to view the assignments of the classes 
which they are enrolled and submit answers to be autograded. 
Moreover, the student should have the option to view the 
feedback after the autograder service processes his 
submission.  

In addition, it is important to provide the teacher with the 
option to manually edit the grade of a particular student 
because something went wrong with the test cases or the 
teacher decides the solution does not complains with the 
specifications of the assignment. Additionally, the teacher 
should have the option to update the grading tests and re-run 
the last submission of all students using new tests.  

Furthermore, reports and information that the system 
could provide will help the students and teachers to perform 
and interact better in the course. For instance, gamification 
techniques could be applied using leader boards to show 
which students completed the exercises faster and give them 
badges by achievements e.g. first in completing the 
laboratory, the sent solution was right since the first 
submission, etc. In other outreach activities and courses in 
Universidad Galileo the use of the website of badgr.io has 
been helpful to foment a better engagement of students in 
finishing their assignments. 

We have also considered that more experienced students 
may want to use a command line tool to send files to the 
system. For this reason, a script should be provided which use 
an API endpoint in the dashboard to send the files. 
2) Data: Since the implementation of the system is 
distributed, it is necessary to communicate the dashboard, that 
acts as a front-end that accepts submissions, and en-queue 
them to be processed by the autograder service. Files are 
stored in the file system and PostgreSQL will be used for 
implementing databases. For example, the information about 
the submissions should be saved, especially the state which 
will be used by the system to know which submissions are 
waiting, running, finished or stopped because a timeout. A 
state machine diagram is shown in Figure II to describe the 
transitions between the states. 

 
 

FIGURE II 
STATE MACHINE OF A SUBMISSION 

3) Autograder Master Service: This is the most complex 
part of the system. In this subsystem all the submissions that 
were en-queue will be processed. In fact, this is the part that 
most of the challenges described in Section II were considered 
in the design and implementation. Therefore, this service 
would be in charge of processing the submissions from the 
queue and store the results of the tests in the database that will 
be displayed in the dashboard.  

An implementation with containers was chosen in order to 
isolate the running tests, they are lightweight and allow 
isolation, we can limit the amount of RAM and CPU and also, 
they can be stopped at a determined time. Specifically, 
Docker [9] containers with Kubernentes [10] were selected as 
a solution to implement the system because their popularity, 
great community and because they provide a nice API to 
programmatically control the execution of the containers. 

Moreover, Docker images are defined in the dashboard by 
the teachers for grading the assignments. This gives the 
possibility of using different versions of programming 
languages making the system more flexible. Additionally, 
API clients are provided for different languages to be used by 
the teachers to submit feedback from the docker container to 
the Autograder Master. For instance, inside a Docker image 
the teacher could use different methods to evaluate a student's 
solution and provide feedback for the errors e.g. black box 
testing, unit testing, static analyzers, memory leak analyzers, 
semantic formals. 

Furthermore, in order to show the status of the service in 
the dashboard, an API is needed to  provide information about 
status: number of queue submissions, number of executing 
submissions, configuration of execution limit, etc. 
In case of a failure and the system is restarted, the system 
should be capable of handling this situation without losing 
information. Hence all the process will have a status that 
allows to know which of them were processing before the 
failure. Moreover the system will start again all the processes 
that didn't finish before the failure. 
4) MOSS: The plagiarism detection is done using MOSS 
(Measure Of Software Similarity). In the dashboard there 
should be an option to send all the submission files from an 
assignment for evaluation in MOSS. As a result, a report of 
similarity would be obtained and will be showed in the 
dashboard so the teacher can review each case to determine if 
it is a plagiarism or not. 

IV. PRELIMINARY CONCLUSIONS 

Finally, some of the challenges to face in the design and 
implementation of a tool for autograding were presented and 
taking into account to determine a proposal for the  
architecture of an autograder system. The tool is still under 
development and it is expected to be tested during the second 
half of this year. Specifically, in the course of "Object 
Oriented Programming and Data Structures" where we are 
looking to validate the functionality and other opportunities 
for improvement. Additionally, we will  evaluate the user 
experience and the perception of the students while using the 
system. We can infer this autograder system will have an 



impact in the learning process of students and the approval 
rate will increase. 

V. ACKNOWLEDGMENTS 

We thank the staff of the courses "Ciencias de la 
Computación I, II and III" who provided their insight and their 
ideas during this research. We also thank  Andres Castellanos 
for his comments and recommendations in this paper. 
Additionally, we thank Universidad Galileo, for fomenting in 
teachers and their staff, the use of technology to embrace 
excellence and better ways of teaching. 

REFERENCES 

[1] L. Yuan and S. Powell, “Moocs and open education: Implications for 
 higher education,” 2013. 
[2] Head, A., Glassman, E., Soares, G., et al.  2017, April. Writing reusable 

code feedback at scale with mixed-initiative program synthesis. In 
Proceedings of the Fourth (2017) ACM Conference on Learning@ 
Scale (pp. 89-98).  

[3] Yulianto, S. V., & Liem, I. 2014, November. Automatic grader for 
programming assignment using source code analyzer. In 2014 
International Conference on Data and Software Engineering (ICODSE) 
(pp. 1-4). IEEE. 

[4] Morris, D. S. 2002, November. Automatically grading Java 
programming assignments via reflection, inheritance, and regular 
expressions. In 32nd Annual Frontiers in Education (Vol. 1, p. T3G). 
IEEE. 

[5] Peveler, M., Maicus, E., & Cutler, B. 2019, February.  Comparing 
Jailed Sandboxes vs Containers within an Autograding System. In 

Proceedings of the 50th ACM Technical Symposium on Computer 
Science Education (pp. 139-145). 

[6] Jackson, D. 1996. A software system for grading student computer 
programs. Computers & Education, 27(3-4), 171-180.  

[7] Khaleel, F. L., Ashaari, N. S., Meriam, T. S., Wook, et al. 2015, 
January. The study of gamification application architecture for 
programming language course. In Proceedings of the 9th International 
Conference on Ubiquitous Information Management and 
Communication (pp. 1-5). 

[8] Fonseca, N. G., Macedo, L., & Mendes, A. J. 2018, September. Using 
early plagiarism detection in programming classes to address the 
student’s difficulties. In 2018 International Symposium on Computers 
in Education (SIIE) (pp. 1-6). IEEE. 

[9] “Docker”  docker.com  Web.  Accessed:  January 28, 2020. 
[10] “Kubernetes”  kubernetes.io Web.  Accessed:  January 28, 2020. 
 
 

AUTHOR INFORMATION 

Diego Calderón, Research Assistant, Turing Lab, 
Universidad Galileo, Guatemala, Guatemala. 
 
Erick Petersen, Research Assistant, RLICT, Universidad 
Galileo , Guatemala , Guatemala  
 
Oscar Rodas, Ph.D., EE Career Director, STEM Outreach 
Program Director and Tesla Lab Director, Universidad 
Galileo, Guatemala, Guatemala. 
 

 


